Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-16T05:01:19.607Z Has data issue: false hasContentIssue false

Correlation of CT and MR with Impedance Monitoring and Histopathology in Stereotactic Biopsies

Published online by Cambridge University Press:  18 September 2015

J. Gorecki
Affiliation:
Division of Neurosurgery and Department of Radiology, Toronto General Hospital and University of Toronto, Toronto
E.J. Dolan*
Affiliation:
Division of Neurosurgery and Department of Radiology, Toronto General Hospital and University of Toronto, Toronto
R.R. Tasker
Affiliation:
Division of Neurosurgery and Department of Radiology, Toronto General Hospital and University of Toronto, Toronto
W. Kucharczyk
Affiliation:
Division of Neurosurgery and Department of Radiology, Toronto General Hospital and University of Toronto, Toronto
*
Division of Neurosurgery, Toronto General Hospital, Room 222, 14 Eaton North, 200 Elizabeth Street, Toronto, Ontario, Canada M5G 2C4
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic Resonance Imaging (MR) and Computer Assisted Tomography (CT) guided stereotaxis combined with intraoperative impedance monitoring and multiple sequential biopsies provides the opportunity to correlate the results of radiologic imaging with impedance and histopathology. The authors present the methods used and preliminary results obtained from 30 stereotactic biopsies with complete correlation in 12 cases. Impedance changes correlate accurately with lesion margins as defined by histology. CT images of enhancing lesions correlate quite closely to the histopathologic lesion margins whereas the appearance of the lesion on MR images is often larger than subsequently identified by either impedance or at pathologic examination. Impedance monitoring is a useful adjunct to stereotactic biopsy as it helps to accurately define lesion margins and can help direct the choice of biopsy sites.

Résumé:

RÉSUMÉ:

La stéréotaxie guidée au moyen de l'imagerie par résonance magnétique (MR) et de la tomographie assistée par ordinateur (CT) combinée au monitoring de l'impédance peropératoire et à des biopsies séquentielles multiples fournissent l'occasion de corréler les résultats de l'imagerie radiologique avec ceux de l'impédance et de l'histopathologie. Les auteurs présentent les méthodes utilisées et les résultats préliminaires obtenus à partir de 30 biopsies prélevées sous stéréotaxie avec corrélation complète dans 12 cas. Les changements d'impédance ont une corrélation précise avec les limites de la lésion telles que définies par l'examen histologique. Il y a une corrélation assez étroite entre les images par CT de lésions qui rehaussent au produit de contraste et les limites histopathologiques de ces lésions, alors que les images par MR montrent souvent des lésions plus étendues que ce qui est constaté ultérieurement lors de l'examen par impédance ou à la pathologie. Le monitoring par impédance est un complément utile à la biopsie stéréotaxique parce qu'il aide à définir précisément les limites des lésions et peut aider à choisir les sites de biopsie.

Type
Neurosurgical Symposium - William S. Keith, Visiting Professorship in Neurosurgery
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Spiegel, EA, Wycis, HT, Marks, M, et al. Stereotaxic apparatus for operations on human brain. Science 1947; 106: 349350.CrossRefGoogle ScholarPubMed
2. Meyer, AW. Methode zum auffinden von hirntumoren bei der trepa-nation durch elektrische widerstandsmessung. Zlb Chir 1921; 48: 18241826.Google Scholar
3. Crile, GW, Hosmer, HR, Rowland, AF. The electrical conductivity of animal tissue under normal and pathological conditions. Am J Physiol 1922; Feb: 59106.CrossRefGoogle Scholar
4. Grant, FC. Localization of brain tumours by determination of the electrical resistance of the growth. J Am Med Assoc 1923; 81: 21692171.CrossRefGoogle Scholar
5. Bullard, DE, Makachinas, TT. Measurement of tissue impedance in conjunction with computed tomography-guided stereotactic biopsies. J Neurol Neurosurg Psychiatry 1987; 50: 4351.CrossRefGoogle Scholar
6. Organ, LW, Tasker, RR, Moody, NF. The impedance profile of the human brain as a localization technique in stereoencephalotomy. Conf Neurol 1967; 29: 192196.CrossRefGoogle Scholar
7. Organ, LW, Tasker, RR, Moody, NF. Brain tumour localization using an electrical impedance technique. J Neurosurg 1968; 28: 3544.CrossRefGoogle ScholarPubMed
8. Robinson, BW, Bryan, JS, Rosvold, HE. Locating brain structures. Extensions to the impedance method. Arch Neurol 1965; 13: 477486.CrossRefGoogle Scholar
9. Kelly, PJ, Kali, B, Goerss, S. Stereotactic CT scanning for the biopsy of intracranial lesions and functional neurosurgery. Appl Neurophysiol 1983; 46: 193199.Google ScholarPubMed
10. Leksell, L, Leksell, D, Schwebel, J. Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry 1985; 48: 1418.CrossRefGoogle ScholarPubMed
11. Gildenberg, PL. Stereotactic neurosurgery and computerized tomo-graphic scanning. Appl Neurophysiol 1983; 46: 170179.Google Scholar
12. Daumas-Duport, C, Monsaigneon, V, Blond, S, et al. Serial stereotac-tic biopsies and CT Scan in gliomas: Correlative study in 100 astrocytomas, oligoastrocytomas and oligodendrocytomas. J Neuro-Oncology 1987; 4: 317328.CrossRefGoogle Scholar
13. Earnest, F, Kelly, PJ, Scheithauer, BW, et al. Cerebral astrocytomas: Histopathologic correlation of MR and CT contrast enhancement with stereotactic biopsy. Radiology 1988; 166: 823827.CrossRefGoogle ScholarPubMed
14. Robinson, BW. Localization of intracranial electrodes. Exp Neurol 1962; 6: 201223.CrossRefGoogle Scholar
15. LeBas, JF, Leviel, JL. Decorps, M, et al. NMR relaxation times from serial stereotactic biopsies in human brain tumours. J Ccmput Assist Tomogr 1984; 8: 10481057.CrossRefGoogle Scholar
16. Becker, DP, Robert, CM, Seelig, J. A simplified method for electrical impedance monitoring in brain tumour localization. J Neurosurg 1970; 32: 375377.CrossRefGoogle Scholar
17. Broggi, G, Franzani, A. Value of serial stereotactic biopsies and impedance monitoring in the treatment of deep brain tumours. J Neurol Neurosurg Psychiatry 1981; 44: 397401.CrossRefGoogle ScholarPubMed
18. Gildenberg, PL, Zenes, C, Flitter, M, et al. Impedance measuring device for detection of penetration of the spinal cord in anterior percutaneous cervical cordotomy. J Neurosurg 1969; 30: 8792.CrossRefGoogle ScholarPubMed
19. Benabid, AL, Persat, JC, Chirossel, JP, et al. Correlative study between computerized transverse scanning and stereoimpedoen-cephalography in space-occupying lesions of the brain. Acta Neurochir 1979; 46: 219232.CrossRefGoogle ScholarPubMed
20. Laitinen, LV, Johansson, GG. Locating human cerebral structures by the impedance method. Conf Neurol 1967; 29: 197201.CrossRefGoogle ScholarPubMed
21. Waltregny, A, Petrov, V, Brotchi, J. Serial stereotaxic brain biopsies. Acta Neurochir Suppl 1974; 21: 221226.Google Scholar