Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-29T22:05:58.881Z Has data issue: false hasContentIssue false

The Development And Applications Of Augmented And Virtual Reality Technology In Spine Surgery Training: A Systematic Review

Published online by Cambridge University Press:  28 April 2023

Youngkyung Jung*
Affiliation:
Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
Varun Muddaluru
Affiliation:
Royal College of Surgeons in Ireland, Dublin, Ireland
Pranjan Gandhi
Affiliation:
Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
Markian Pahuta
Affiliation:
Division of Orthopedic Surgery, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada
Daipayan Guha
Affiliation:
Division of Neurosurgery, Hamilton General Hospital, McMaster University, Hamilton, ON, Canada
*
Corresponding author: Youngkyung Jung, McMaster University, 1280 Main St West, Hamilton ON, Canada. Email: jessica.jung@medportal.ca

Abstract:

Background:

The COVID-19 pandemic has accelerated the growing global interest in the role of augmented and virtual reality in surgical training. While this technology grows at a rapid rate, its efficacy remains unclear. To that end, we offer a systematic review of the literature summarizing the role of virtual and augmented reality on spine surgery training.

Methods:

A systematic review of the literature was conducted on May 13th, 2022. PubMed, Web of Science, Medline, and Embase were reviewed for relevant studies. Studies from both orthopedic and neurosurgical spine programs were considered. There were no restrictions placed on the type of study, virtual/augmented reality modality, nor type of procedure. Qualitative data analysis was performed, and all studies were assigned a Medical Education Research Study Quality Instrument (MERSQI) score.

Results:

The initial review identified 6752 studies, of which 16 were deemed relevant and included in the final review, examining a total of nine unique augmented/virtual reality systems. These studies had a moderate methodological quality with a MERSQI score of 12.1 + 1.8; most studies were conducted at single-center institutions, and unclear response rates. Statistical pooling of the data was limited by the heterogeneity of the study designs.

Conclusion:

This review examined the applications of augmented and virtual reality systems for training residents in various spine procedures. As this technology continues to advance, higher-quality, multi-center, and long-term studies are required to further the adaptation of VR/AR technologies in spine surgery training programs.

Résumé :

RÉSUMÉ :

Le développement et les applications des technologies de la réalité augmentée et de la réalité virtuelle dans la formation destinée à la chirurgie de la colonne vertébrale : une revue systématique.

Objectif :

La pandémie de COVID-19 a accéléré l’intérêt mondial croissant pour le rôle des technologies de la réalité augmentée et de la réalité virtuelle dans la formation chirurgicale. Bien que ces technologies se développent rapidement, leur efficacité reste incertaine. À cet égard, nous voulons proposer ici une revue systématique de littérature résumant le rôle de ces technologies dans la formation dédiée à la chirurgie de la colonne vertébrale.

Méthodes :

Une analyse systématique de la littérature a été réalisée le 13 mai 2022. Les bases de données PubMed, Web of Science, Medline et Embase ont ainsi été examinées à la recherche d’études pertinentes. Seules des études provenant de programmes orthopédiques et neurochirurgicaux de la colonne vertébrale ont été prises en compte. Précisons qu’aucune restriction n’a été imposée quant aux types d’étude, aux modalités de réalité virtuelle ou augmentée ou aux types de procédure adoptée. Enfin, une analyse qualitative de données a été effectuée et toutes les études retenues ont reçu un score « MERSQI » (Medical Education Research Study Quality Instrument).

Résultats :

Un examen initial a permis d’identifier 6752 études, dont 16 ont été jugées pertinentes et incluses dans notre analyse finale. Au total, cela a représenté neuf systèmes uniques de réalité augmentée ou virtuelle. La qualité méthodologique de ces études s’est révélée moyenne, leur score MERSQI étant de 12,1 + 1,8. À noter que la plupart de ces études ont été menées dans des établissements monocentrique dont les taux de réponse ne sont pas clairs. Le regroupement statistique (statistical pooling) des données a été limité par l’hétérogénéité des modèles d’étude.

Conclusion :

Cette analyse s’est penchée sur les applications des technologies de la réalité augmentée ou virtuelle destinées à former des résidents quant aux diverses procédures chirurgicales de la colonne vertébrale. Comme ces technologies continuent de progresser, des études de meilleure qualité, multicentriques et à long terme sont nécessaires pour approfondir leur adaptation aux programmes de formation à la chirurgie de la colonne vertébrale.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Canadian Neurological Sciences Federation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Milgram, P, Takemura, H, Utsumi, A, Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. Telemanipulator and Telepresence Technologies; 1994. pp. 2351.Google Scholar
Sutherland, I. The ultimate display. In: Proceedings of the IFIPS Congress 65. IFIP. CUMINCAD, New York, 1965, pp. 506508. http://papers.cumincad.org/cgi-bin/works/Show, accessed December 1, 2022.Google Scholar
Mao, RQ, Lan, L, Kay, J, et al. Immersive virtual reality for surgical training: A systematic review. J Surg Res. 2021;268:4058. DOI: 10.1016/j.jss.2021.06.045.10.1016/j.jss.2021.06.045CrossRefGoogle ScholarPubMed
Seymour, NE, Gallagher, AG, Roman, SA, et al. Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Ann Surg. 2002;236:458463. DOI: 10.1097/00000658-200210000-00008 discussion 463-464.10.1097/00000658-200210000-00008CrossRefGoogle ScholarPubMed
Daniels, AH, Ames, CP, Garfin, SR, et al. Spine surgery training: Is it time to consider categorical spine surgery residency? Spine J. 2015;15:1513–8. DOI: 10.1016/j.spinee.2014.08.452.10.1016/j.spinee.2014.08.452CrossRefGoogle ScholarPubMed
Wacker, FK, Vogt, S, Khamene, A, et al. An augmented reality system for MR image-guided needle biopsy: Initial results in a swine model. Radiology. 2006;238:497504. DOI: 10.1148/radiol.2382041441.10.1148/radiol.2382041441CrossRefGoogle Scholar
Tagaytayan, R, Kelemen, A, Sik-Lanyi, A, C. Augmented reality in neurosurgery. Arch Med Sci. 2018;14:572–8. DOI: 10.5114/aoms.2016.58690.10.5114/aoms.2016.58690CrossRefGoogle ScholarPubMed
Wu, J-R, Wang, M-L, Liu, K-C, Hu, M-H, Lee, P-Y. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Programs Biomed. 2014;113:869–81. DOI: 10.1016/j.cmpb.2013.12.021.10.1016/j.cmpb.2013.12.021CrossRefGoogle ScholarPubMed
Hughes, CL, Fidopiastis, C, Stanney, KM, Bailey, PS, Ruiz, E. The psychometrics of cybersickness in augmented reality. Frontiers in Virtual Reality; 2020. 1. https://www.frontiersin.org/articles/10.3389/frvir.2020.602954, accessed December 18, 2022.Google Scholar
Brunnström, K, Dima, E, Qureshi, T, Johanson, M, Andersson, M, Sjöström, M. Latency impact on quality of experience in a virtual reality simulator for remote control of machines. Signal Process Image Commun. 2020;89:116005. DOI: 10.1016/j.image.2020.116005.10.1016/j.image.2020.116005CrossRefGoogle Scholar
Grosch, AS, Schröder, T, Schröder, T, Onken, J, Picht, T. Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training. Acta Neurochir. 2020;162:1957–65. DOI: 10.1007/s00701-020-04359-w.10.1007/s00701-020-04359-wCrossRefGoogle ScholarPubMed
Cao, C, Cerfolio, RJ. Virtual or augmented reality to enhance surgical education and surgical planning. Thorac Surg Clin. 2019;29:329–37. DOI: 10.1016/j.thorsurg.2019.03.010.10.1016/j.thorsurg.2019.03.010CrossRefGoogle ScholarPubMed
Reed, DA, Cook, DA, Beckman, TJ, Levine, RB, Kern, DE, Wright, SM. Association between funding and quality of published medical education research. JAMA. 2007;298:10021009. DOI: 10.1001/jama.298.9.1002.10.1001/jama.298.9.1002CrossRefGoogle ScholarPubMed
Hou, Y, Shi, J, Lin, Y, Chen, H, Yuan, W. Virtual surgery simulation versus traditional approaches in training of residents in cervical pedicle screw placement. Arch Orthop Trauma Surg. 2018;138:777–82. DOI: 10.1007/s00402-018-2906-0.10.1007/s00402-018-2906-0CrossRefGoogle ScholarPubMed
Hou, Y, Lin, Y, Shi, J, Chen, H, Yuan, W. Effectiveness of the thoracic pedicle screw placement using the virtual surgical training system: A cadaver study. Oper Neurosurg (Hagerstown). 2018;15:677–85. DOI: 10.1093/ons/opy030.10.1093/ons/opy030CrossRefGoogle ScholarPubMed
Shi, J, Hou, Y, Lin, Y, Chen, H, Yuan, W. Role of visuohaptic surgical training simulator in resident education of orthopedic surgery. World Neurosurg. 2018;111:e98e104. DOI: 10.1016/j.wneu.2017.12.015.10.1016/j.wneu.2017.12.015CrossRefGoogle ScholarPubMed
Xin, B, Chen, G, Wang, Y, et al. The efficacy of immersive virtual reality surgical simulator training for pedicle screw placement: A randomized double-blind controlled trial. World Neurosurg. 2018;S1878-8750:32913–9. DOI: 10.1016/j.wneu.2018.12.090.Google Scholar
Luca, A, Giorgino, R, Gesualdo, L, et al. Innovative educational pathways in spine surgery: Advanced virtual reality-based training. World Neurosurg. 2020;140:674–80. DOI: 10.1016/j.wneu.2020.04.102.10.1016/j.wneu.2020.04.102CrossRefGoogle ScholarPubMed
Chen, T, Zhang, Y, Ding, C, et al. Virtual reality as a learning tool in spinal anatomy and surgical techniques. N Am Spine Soc J. 2021;6:100063. DOI: 10.1016/j.xnsj.2021.100063.Google ScholarPubMed
Knafo, S, Penet, N, Gaillard, S, Parker, F. Cognitive versus virtual reality simulation for evaluation of technical skills in neurosurgery. Neurosurg Focus. 2021;51:E9. DOI: 10.3171/2021.5.FOCUS201007.10.3171/2021.5.FOCUS201007CrossRefGoogle ScholarPubMed
Yanni, DS, Ozgur, BM, Louis, RG, et al. Real-time navigation guidance with intraoperative CT imaging for pedicle screw placement using an augmented reality head-mounted display: A proof-of-concept study. Neurosurg Focus. 2021;5:E11. DOI: 10.3171/2021.5.FOCUS21209.10.3171/2021.5.FOCUS21209CrossRefGoogle Scholar
Dennler, C, Jaberg, L, Spirig, J, et al. Augmented reality-based navigation increases precision of pedicle screw insertion. J Orthop Surg Res. 2020;15:174. DOI: 10.1186/s13018-020-01690-x.10.1186/s13018-020-01690-xCrossRefGoogle ScholarPubMed
Luciano, CJ, Banerjee, PP, Bellotte, B, et al. Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery. 2011;69:ons14–19;. DOI: 10.1227/NEU.0b013e31821954ed discussion ons19.10.1227/NEU.0b013e31821954edCrossRefGoogle Scholar
Luciano, CJ, Banerjee, PP, Sorenson, JM, et al. Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery. 2013;72 Suppl 1:8996. DOI: 10.1227/NEU.0b013e3182750a8d.10.1227/NEU.0b013e3182750a8dCrossRefGoogle ScholarPubMed
Yu, H, Zhou, Z, Lei, X, Liu, H, Fan, G, He, S. Mixed reality-based preoperative planning for training of percutaneous transforaminal endoscopic discectomy: A feasibility study. World Neurosurg. 2019;129:e767e775. DOI: 10.1016/j.wneu.2019.06.020.10.1016/j.wneu.2019.06.020CrossRefGoogle ScholarPubMed
Ledwos, N, Mirchi, N, Bissonnette, V, et al. Virtual reality anterior cervical discectomy and fusion simulation on the novel sim-ortho platform: Validation studies. Oper Neurosurg (Hagerstown). 2020;20:7482. DOI: 10.1093/ons/opaa269.10.1093/ons/opaa269CrossRefGoogle ScholarPubMed
Mirchi, N, Bissonnette, V, Ledwos, N, et al. Artificial neural networks to assess virtual reality anterior cervical discectomy performance. Oper Neurosurg (Hagerstown). 2020;19:6575. DOI: 10.1093/ons/opz359.10.1093/ons/opz359CrossRefGoogle ScholarPubMed
Alkadri, S, Ledwos, N, Mirchi, N, et al. Utilizing a multilayer perceptron artificial neural network to assess a virtual reality surgical procedure. Comput Biol Med. 2021;136:104770. DOI: 10.1016/j.compbiomed.2021.104770.10.1016/j.compbiomed.2021.104770CrossRefGoogle ScholarPubMed
Bissonnette, V, Mirchi, N, Ledwos, N, Alsidieri, G, Winkler-Schwartz, A, Del Maestro, RF. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task. J Bone Joint Surg Am. 2019;101:e127. DOI: 10.2106/JBJS.18.01197.10.2106/JBJS.18.01197CrossRefGoogle Scholar
Liu, T, Tai, Y, Zhao, C, et al. Augmented reality in neurosurgical navigation: A survey. Int J Med Robot Comput Assist Surg. 2020;16:e2160–20. DOI: 10.1002/rcs.2160.10.1002/rcs.2160CrossRefGoogle Scholar
Winkler-Schwartz, A, Bissonnette, V, Mirchi, N, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76:1681–90.10.1016/j.jsurg.2019.05.015CrossRefGoogle ScholarPubMed
Winkler-Schwartz, A, Yilmaz, R, Mirchi, N, et al. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open. 2019;2:e198363–e198363. DOI: 10.1001/jamanetworkopen.2019.8363.10.1001/jamanetworkopen.2019.8363CrossRefGoogle ScholarPubMed