Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-vkn6t Total loading time: 28.711 Render date: 2022-08-10T11:35:19.507Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Effects of Deep Brain Stimulation of the Subthalamic Nucleus Settings on Voice Quality, Intensity, and Prosody in Parkinson’s Disease: Preliminary Evidence for Speech Optimization

Published online by Cambridge University Press:  25 March 2019

Anita Abeyesekera*
Affiliation:
Department of Health and Rehabilitation Sciences, School of Communication Sciences and Disorders, Western University, London, ON, Canada
Scott Adams
Affiliation:
Department of Health and Rehabilitation Sciences, School of Communication Sciences and Disorders, Department of Clinical Neurological Sciences, Western University, London, ON, Canada
Cynthia Mancinelli
Affiliation:
Department of Health and Rehabilitation Sciences, School of Communication Sciences and Disorders, Western University, London, ON, Canada
Thea Knowles
Affiliation:
Department of Health and Rehabilitation Sciences, School of Communication Sciences and Disorders, Western University, London, ON, Canada
Greydon Gilmore
Affiliation:
Department of Biomedical Engineering, Western University, London, ON, Canada
Mehdi Delrobaei
Affiliation:
Faculty of Electrical Engineering and the Center for Research and Technology (CREATECH), K. N. Toosi University of Technology, Tehran, Iran
Mandar Jog
Affiliation:
Department of Clinical Neurological Sciences, Western University, London, ON, Canada
*
Correspondence to: Anita Abeyesekera, Department of Health and Rehabilitation Sciences, School of Communication Sciences and Disorders, Western University, Elborn College, 1201 Western Road, London, ON, N6G 1H1, Canada. Email: aabeyese@uwo.ca
Rights & Permissions[Opens in a new window]

Abstract:

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Objective: To systematically evaluate how different deep brain stimulation of the subthalamic nucleus (STN-DBS) amplitude, frequency, and pulse-width electrical parameter settings impact speech intensity, voice quality, and prosody of speech in Parkinson’s disease (PD). Methods: Ten individuals with PD receiving bilateral STN-DBS treatments were seen for three baseline and five treatment visits. The five treatment visits involved an examination of the standard clinical settings as well as manipulation of different combinations of frequency (low, mid, and high), pulse width (low, mid, and high), and voltage (low, mid, and high) of stimulation. Measures of speech intensity, jitter, shimmer, harmonics–noise ratio, semitone standard deviation, and listener ratings of voice quality and prosody were obtained for each STN-DBS manipulation. Results: The combinations of lower frequency, lower pulse width, and higher voltage settings were associated with improved speech outcomes compared to the current standard clinical settings. In addition, decreased total electrical energy delivered to the STN appears to be associated with speech improvements. Conclusions: This study provides preliminary evidence that STN-DBS may be optimized for Parkinson-related problems with voice quality, speech intensity, and prosody of speech.

Résumé:

Les effets de divers réglages de stimulation cérébrale profonde destinée au noyau sous-thalamique sur la qualité de la voix, sur l’intensité de la parole et sur la prosodie de la parole chez des patients atteints de la maladie de Parkinson. Objectif : Évaluer de façon systématique comment différents niveaux de stimulation cérébrale profonde (SCP) du noyau sous-thalamique peuvent avoir un impact sur l’intensité et la prosodie de la parole de patients atteints de la maladie de Parkinson (MP) de même que sur la qualité de leur voix. Pour ce faire, différents réglages de nature électrique ont été envisagés en ce qui a trait à l’amplitude, la fréquence et la durée des impulsions induites. Méthodes : Au total, 10 patients atteints de MP et bénéficiant de traitements de SCP destinés à leur noyau sous-thalamique ont été vus dans le cadre de 3 examens préliminaires et de 5 visites prévoyant un traitement. Ces 5 visites de nature thérapeutique ont sous-tendu un examen des réglages cliniques standards de même qu’une manipulation permettant de combiner, en matière de SCP, diverses fréquences (basses, moyennes, élevées), diverses durées des impulsions (courtes, moyennes, longues) et diverses tensions (basses, moyennes, élevées). Pour chaque intervention de SCP visant le noyau sous-thalamique, nous avons obtenu des mesures portant sur les aspects suivants : intensité, agitation et tremblement de la parole ; rapport harmoniques/bruits ; écart-type d’un demi-ton ; et finalement des notations d’auditeurs en ce qui regarde la qualité de la voix et la prosodie. Résultats : Le fait de combiner des réglages prévoyant des basses fréquences, des durées d’impulsion courtes et des tensions élevées a été associé, en comparaison avec les réglages cliniques standards actuels, à des résultats améliorés en matière de parole. Qui plus est, une diminution totale de l’énergie électrique destinée au noyau sous-thalamique semble aussi être associée à des résultats améliorés en matière de parole. Conclusions : Cette étude contient donc des preuves préliminaires suggérant que la SCP du noyau sous-thalamique pourrait être optimisée pour traiter des problèmes de qualité de la voix, mais également d’intensité et de prosodie de la parole, qui sont relatifs à la MP.

Type
Original Article
Copyright
© 2019 The Canadian Journal of Neurological Sciences Inc. 

References

Duffy, JR. Motor speech disorders: substrates, differential diagnosis, and management, 3rd ed. St. Louis, MO: Elsevier, Mosby; 2013.Google Scholar
Tewari, A, Jog, R, Jog, M. The striatum and subthalamic nucleus as independent and collaborative structures in motor control. Front Syst Neurosci. 2016;10:17.10.3389/fnsys.2016.00017CrossRefGoogle ScholarPubMed
Benabid, AL, Chabardes, S, Mitrofanis, J, Pollak, P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):6781.10.1016/S1474-4422(08)70291-6CrossRefGoogle ScholarPubMed
Kern, DS, Kumar, R. Deep brain stimulation. Neurologist. 2007;13(5):237–52.10.1097/NRL.0b013e3181492c48CrossRefGoogle ScholarPubMed
Mazzone, P, Lozano, A, Stanzione, P, et al. Implantation of human pedunculopontine nucleus: a safe and clinically relevant target in Parkinson’s disease. Neuroreport. 2005;16:1877–81.10.1097/01.wnr.0000187629.38010.12CrossRefGoogle ScholarPubMed
Pinto, S, Gentil, M, Krack, P, et al. Changes induced by levodopa and subthalamic nucleus stimulation on Parkinsonian speech. Mov Disord. 2005;20:1507–15.10.1002/mds.20601CrossRefGoogle ScholarPubMed
Moreau, C, Pennel-Ployart, O, Pinto, S, et al. Modulation of dysarthropneumophonia by low-frequency STN DBS in advanced Parkinson’s disease. Mov Disord. 2011;26(4):659–63.10.1002/mds.23538CrossRefGoogle ScholarPubMed
Sidiropoulos, C, Walsh, R, Meaney, C, Poon, YY, Fallis, M, Moro, E. Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. J Neurol. 2013;260(9):2306–11.10.1007/s00415-013-6983-2CrossRefGoogle ScholarPubMed
Klostermann, F, Ehlen, F, Vesper, J, et al. Effects of subthalamic deep brain stimulation on dysarthrophonia in Parkinson’s disease. J Neurol Neurosurg Psychiatr. 2008;79:522–9.10.1136/jnnp.2007.123323CrossRefGoogle ScholarPubMed
D’Alatri, L, Paludetti, G, Contarino, MF, Galla, S, Marchese, MR, Bentivoglio, AR. Effects of bilateral subthalamic nucleus stimulation and medication on Parkinsonian speech impairment. J Voice. 2008;22:365–72.CrossRefGoogle ScholarPubMed
Dromey, C, Kumar, R, Lang, A, Lozano, A. An investigation of the effects of subthalamic nucleus stimulation on acoustic measures of voice. Mov Disord. 2000;15:1132–8.10.1002/1531-8257(200011)15:6<1132::AID-MDS1011>3.0.CO;2-O3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Gentil, M, Pinto, S, Pollak, P,, et al. Effect of bilateral stimulation of the subthalamic nucleus on Parkinsonian dysarthria. Brain Lang. 2003;85:190–6.10.1016/S0093-934X(02)00590-4CrossRefGoogle ScholarPubMed
Goetz, CG, Fahn, S, Martinez-Martin, P, et al. Movement Disorder Society–sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov Disord. 2007;22(1):41–7.CrossRefGoogle ScholarPubMed
Krause, M, Fogel, W, Mayer, P, Kloss, M, Tronnier, V. Chronic inhibition of the subthalamic nucleus in Parkinson’s disease. J Neurol Sci. 2004;219:119–24.10.1016/j.jns.2004.01.004CrossRefGoogle ScholarPubMed
Mate, MA, Cobeta, I, Jiménez-Jiménez, FJ, Figueiras, R. Digital voice analysis in patients with advanced Parkinson’s disease undergoing deep brain stimulation therapy. J Voice. 2012;26:496501.10.1016/j.jvoice.2011.03.006CrossRefGoogle ScholarPubMed
Santens, P, De Letter, M, Van Borsel, J, De Reuck, J, Caemaert, J. Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson’s disease. Brain Lang. 2003;87:253–58.10.1016/S0093-934X(03)00142-1CrossRefGoogle ScholarPubMed
Skodda, S, Gronheit, W, Schlegel, U, Sudmeyer, M, Schnitzler, A, Wojtecki, L. Effect of subthalamic stimulation on voice and speech in Parkinson’s disease: for the better or worse? Front Neurol. 2014;4:218.10.3389/fneur.2013.00218CrossRefGoogle ScholarPubMed
Tanaka, Y, Tsuboi, T, Watanabe, H, et al. Voice features of Parkinson’s disease patients with subthalamic nucleus deep brain stimulation. J Neurol. 2015;262:1173–81.10.1007/s00415-015-7681-zCrossRefGoogle ScholarPubMed
Tripoliti, E, Zrinzo, L, Martinez-Torres, I, et al. Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation. Mov Disord. 2008;23:2377–83.10.1002/mds.22296CrossRefGoogle ScholarPubMed
Valalik, I, Smehak, G, Bognar, L, Csokay, A. Voice acoustic changes during bilateral subthalamic stimulation in patients with Parkinson’s disease. Clin Neurol Neurosurg. 2011;113:188–95.10.1016/j.clineuro.2010.11.002CrossRefGoogle ScholarPubMed
Xie, Y, Zhang, Y, Zheng, Z, et al. Changes in speech characters of patients with Parkinson’s disease after bilateral subthalamic nucleus stimulation. J Voice. 2011; 25:751–8.10.1016/j.jvoice.2010.08.002CrossRefGoogle ScholarPubMed
Isaias, IU, Tagliati, M. Deep brain stimulation programming for movement disorders. In: Tarsy, D, Vitek, JL, Starr, P, Okun, M, editors. Current clinical neurology: deep brain stimulation in neurological and psychiatric disorders. Totowa, NJ: Springer; 2008, pp. 361–97.CrossRefGoogle Scholar
Groiss, SJ, Wojtecki, L, Südmeyer, M, Schnitzler, A. Deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disord. 2009;2(6):20–8.CrossRefGoogle ScholarPubMed
Tomlinson, CL, Stowe, R, Patel, S, Rick, C, Gray, R, Clarke, CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–53.10.1002/mds.23429CrossRefGoogle ScholarPubMed
Horn, A, Kühn, A. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage. 2014;107:127–35.10.1016/j.neuroimage.2014.12.002CrossRefGoogle ScholarPubMed
Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95113.10.1016/j.neuroimage.2007.07.007CrossRefGoogle ScholarPubMed
Claire, F, Ranoux, D, Guehl, D, Burbaud, P, Cuny, E. A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson’s disease. Acta Neurochirurg. 2013;155:1647–54.Google Scholar
Boersma, P, Weenink, D. PRAAT (version 5.0.20) [Software]; 2008. Available at: http://www.fon.hum.uva.nl/praat/.Google Scholar
Jech, R, Mueller, K, Urgosik, D, et al. The subthalamic microlesion story in Parkinson’s disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI. PLoS ONE. 2012;7(11):e49056.10.1371/journal.pone.0049056CrossRefGoogle ScholarPubMed
Koss, AM, Alterman, RL, Tagliati, M, Shils, JL. Calculating total electrical energy delivered by deep brain stimulation systems. Ann Neurol. 2005;58:168.10.1002/ana.20525CrossRefGoogle ScholarPubMed
di Biase, L, Fasano, A. Low-frequency deep brain stimulation for Parkinson’s disease: great expectation or false hope? Mov Disord. 2016;31:962–7.10.1002/mds.26658CrossRefGoogle ScholarPubMed
Tommasi, G, Krack, P, Fraix, V, et al. Pyramidal tract side effects induced by deep brain stimulation of the subthalamic nucleus. J Neurol Neurosurg Psychiatr. 2008;79:813–19.10.1136/jnnp.2007.117507CrossRefGoogle ScholarPubMed
Fenoy, AJ, McHenry, MA, Schiess, MC. Speech changes induced by deep brain stimulation of the subthalamic nucleus in Parkinson disease: involvement of the dentatorubrothalamic tract. J Neurosurg. 2016;126(6):2017–27.10.3171/2016.5.JNS16243CrossRefGoogle ScholarPubMed
Carpenter, MB. Core text of neuroanatomy. Baltimore: Williams and Wilkins; 1991.Google Scholar
Kumar, R, Johnson, L. Managing Parkinson’s disease patients treated with deep brain stimulation. In: Marks, WJ, editor. Deep brain stimulation management. New York: Cambridge University Press; 2011.Google Scholar
Moro, E, Esselink, RJA, Xie, J, et al. The impact on Parkinson’s disease of electrical parameter settings in subthalamic nucleus stimulation. Neurology. 2002;59:706713.10.1212/WNL.59.5.706CrossRefGoogle Scholar
You have Access
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of Deep Brain Stimulation of the Subthalamic Nucleus Settings on Voice Quality, Intensity, and Prosody in Parkinson’s Disease: Preliminary Evidence for Speech Optimization
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of Deep Brain Stimulation of the Subthalamic Nucleus Settings on Voice Quality, Intensity, and Prosody in Parkinson’s Disease: Preliminary Evidence for Speech Optimization
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of Deep Brain Stimulation of the Subthalamic Nucleus Settings on Voice Quality, Intensity, and Prosody in Parkinson’s Disease: Preliminary Evidence for Speech Optimization
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *