Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T10:56:37.636Z Has data issue: false hasContentIssue false

Effects of Surgical Excision and Radiation on Medulloblastoma Cell Invasiveness

Published online by Cambridge University Press:  02 December 2014

Adrianna Ranger*
Affiliation:
Brain Research Laboratories, Experimental Research Unit, Division of Neurosurgery
Warren McDonald
Affiliation:
Brain Research Laboratories, Experimental Research Unit, Division of Neurosurgery
Glenn S. Bauman
Affiliation:
London Regional Cancer Program-Radiation Oncology, Victoria Hospital, London Health Sciences Centre, London, Ontario
Rolando Del Maestro
Affiliation:
Brain Tumor Research Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
*
Division of Neurosurgery, Children’s Hospital London Health Sciences Centre, 800 Commissioners Road East, Room E6-315, London, Ontario, N6A 4G5, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives:

Surgical resection and adjuvant radiation are mainstays of medulloblastoma (MB) patient management. We utilized a novel 3-dimensional assay to identify how (a) radiation, (b) excision of the primary tumour aggregate, and (c) both treatments combined influence MB cell invasiveness.

Methods:

Five MB cell lines (UW228-1, 2 and 3; Daoy, and Madsen) were implanted onto a 3-dimensional, type I collagen gel assay to assess tumour invasion distance over five days, in response to (1) needle-assisted excision of the central cell aggregate; (2) pre-exposure to single-dose and fractionated dose irradiation in doses from 6-25 and 8-24 Gy, respectively; and (3) excision plus either single-dose or fractionated radiation.

Results:

Within hours, individual MB cells detached from the surface of the cell aggregates and invaded the collagen matrix, to distances up to 1200 μm and at rates up to 300 μm daily. The UW228-1 cell line was less invasive than the other cell lines and was dropped from further analysis. In the four remaining lines, a dose-dependent decline in tumour invasiveness was identified, both for single-dose and fractionated radiation, which achieved statistically decreased invasion distances at higher doses, especially of fractionated irradiation. Excision of the central tumour aggregate tended towards exerting a late effect on cell invasion, but exerted no significant influence on the radio-sensitivity of residual cells.

Conclusions:

Both single-dose and fractionated dose irradiation appear to inhibit MB cell invasiveness in a dose-dependent manner, whereas excision of the central cell aggregate exerts no effect on residual invading cells.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2009

References

1.Ang, C, Hauerstock, D, Guiot, MC, Kasymjanova, G, Roberge, D, Kavan, P, et al.Characteristics and outcomes of medulloblastoma in adults. Pediatr Blood Cancer. 2008; 51:6037.CrossRefGoogle ScholarPubMed
2.Coulbois, S, Civit, T, Grignon, Y, Taillandier, L, Girard, F, Marchal, C, et al.[Adult medulloblastoma. Review of 22 patients] [Article in French]. Neurochirurgie. 2001; 47:612.Google Scholar
3.Giordana, MT, Schiffer, P, Lanotte, M, Girardi, P, Chio, A.Epidemiology of adult medulloblastoma. Int J Cancer. 1999; 80: 68992.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
4.Farwell, JR, Flannery, JT.Adult occurrence of medulloblastoma. Acta Neurochir (Wien). 1987; 86:15.CrossRefGoogle ScholarPubMed
5.Pobereskin, L, Treip, C.Adult medulloblastoma. J Neurol Neurosurg Psychiatry. 1986; 49:3942.CrossRefGoogle ScholarPubMed
6.Chan, MY, Teo, WY, Seow, WT, Tan, AM.Epidemiology, management and treatment outcome of medulloblastoma in Singapore. Ann Acad Med Singapore. 2007; 36:3148.CrossRefGoogle ScholarPubMed
7.Kadri, H, Mawla, AA, Murad, L.Incidence of childhood brain tumors in Syria (1993-2002). Pediatr Neurosurg. 2005; 41:1737.CrossRefGoogle ScholarPubMed
8.Feltbower, RG, Picton, S, Bridges, LR, Crooks, DA, Glaser, AW, McKinney, PA.Epidemiology of central nervous system tumors in children and young adults (0-29 years), Yorkshire, United Kingdom. Pediatr Hematol Oncol. 2004; 21:64760.CrossRefGoogle Scholar
9.Lang, O, Kondas, O, Torok, S, Hauser, P, Bognar, L, Schuler, D.[Incidence of pediatric brain tumors in Hungary between 1989 and 1999] [Article in Hungarian]. Orv Hetil. 2002; 143:4514.Google Scholar
10.Agerlin, N, Gjerris, F, Brincker, H, Haase, J, Laursen, H, Moller, KA, et al.Childhood medulloblastoma in Denmark 1960-1984. A population-based retrospective study. Childs Nerv Syst. 1999; 15:2936 (discussion 37).CrossRefGoogle ScholarPubMed
11.Stiller, CA, Bunch, KJ.Brain and spinal tumours in children aged under two years: incidence and survival in Britain, 1971-85. Br J Cancer. 1992; 18:S503.Google ScholarPubMed
12.Chi, JG, Khang, SK.Central nervous system tumors among Koreans-a statistical study on 697 cases. J Korean Med Sci. 1989; 4: 7790.CrossRefGoogle ScholarPubMed
13.Alston, RD, Newton, R, Kelsey, A, Newbould, MJ, Birch, JM, Lawson, B, et al.Childhood medulloblastoma in northwest England 1954 to 1997: incidence and survival. Dev Med Child Neurol. 2003; 45:30814.CrossRefGoogle ScholarPubMed
14.McNeil, DE, Coté, TR, Clegg, L, Rorke, LB.Incidence and trends in pediatric malignancies medulloblastoma/primitive neuroectodermal tumor: a SEER update. Surveillance Epidemiology and End Results. Med Pediatr Oncol. 2002; 39:1904.CrossRefGoogle ScholarPubMed
15.Farinotti, M, Ferrarini, M, Solari, A, Filippini, G.Incidence and survival of childhood CNS tumours in the Region of Lombardy, Italy. Brain. 1998; 121:142936.CrossRefGoogle ScholarPubMed
16.Roberts, RO, Lynch, CF, Jones, MP, Hart, MN.Medulloblastoma: a population-based study of 532 cases. J Neuropathol Exp Neurol. 1991; 50:13444.CrossRefGoogle ScholarPubMed
17.Kopac, S, Jereb, B.Medulloblastoma in children 0-3 years old: forty years’ experience in Slovenia. Pediatr Hematol Oncol. 2004; 21:1721.CrossRefGoogle ScholarPubMed
18.Rickert, CH.Epidemiological features of brain tumors in the first 3 years of life. Childs Nerv Syst. 1998; 14:54750.CrossRefGoogle ScholarPubMed
19.Kumar, R, Tekkok, IH, Jones, RA.Intracranial tumours in the first 18 months of life. Childs Nerv Syst. 1990; 6:3714.CrossRefGoogle ScholarPubMed
20.Janish, W, Haas, JF, Schreiber, D, Gerlach, H.Primary central nervous system tumors in stillborns and infants. Epidemiological considerations. J Neurooncol. 1984; 2:1136.Google Scholar
21.Johannesen, TB, Langmark, F, Lote, K.Cause of death and long-term survival in patients with neuro-epithelial brain tumours: a population-based study. Eur J Cancer. 2003; 39:235563.CrossRefGoogle ScholarPubMed
22.Di Rocco, C, Iannelli, A, Papacci, F, Tamburrini, G.Prognosis of medulloblastoma in infants. Childs Nerv Syst. 1997; 13:38896.CrossRefGoogle ScholarPubMed
23.Koeller, KK, Rushing, EJ.From the archives of the AFIP: medulloblastoma: a comprehensive review with radiologicpathologic correlation. Radiographics. 2003; 23:1337.CrossRefGoogle ScholarPubMed
24.Ayan, I, Kebudi, R, Bayindir, C, Darendeliler, E.Microscopic local leptomeningeal invasion at diagnosis of medulloblastoma. Int J Radiat Oncol Biol Phys. 1997; 39:4616.CrossRefGoogle ScholarPubMed
25.Laerum, OD.Local spread of malignant neuroepithelial tumors. Acta Neurochir (Wien). 1997; 139:51522.CrossRefGoogle ScholarPubMed
26.Mulhern, RK, Merchant, TE, Gajjar, A, Reddick, WE, Kun, LE.Late neurocognitive sequelae in survivors of brain tumours in childhood. Lancet Oncol. 2004; 5:399408.CrossRefGoogle ScholarPubMed
27.Palmer, SL, Reddick, WE, Gajjar, A.Understanding the cognitive impact on children who are treated for medulloblastoma. J Pediatr Psychol. 2007; 32:10409.CrossRefGoogle ScholarPubMed
28.Spiegler, BJ, Bouffet, E, Greenberg, ML, Rutka, JT, Mabbott, DJ.Change in neurocognitive functioning after treatment with cranial radiation in childhood. J Clin Oncol. 2004; 22:70613.CrossRefGoogle ScholarPubMed
29.Qiu, D, Kwong, DL, Chan, GC, Leung, LH, Khong, PL.Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys. 2007; 69:84651.CrossRefGoogle ScholarPubMed
30.Abd El-Aal, HH, Mokhtar, MM, Habib, EE, El-Kashef, AT, Fahmy, ES.Medulloblastoma: conventional radiation therapy in comparison to chemo radiation therapy in the post-operative treatment of high-risk patients. J Egypt Natl Canc Inst. 2005; 17: 3017.Google ScholarPubMed
31.Maddrey, AM, Bergeron, JA, Lombardo, ER, McDonald, NK, Mulne, AF, Barenberg, PD, et al.Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. J Neurooncol. 2005; 72:24553.CrossRefGoogle ScholarPubMed
32.Murthy, SN, Cohen, ME.Pseudomigraine with prolonged aphasia in a child with cranial irradiation for medulloblastoma. J Child Neurol. 2002; 17:1348.CrossRefGoogle Scholar
33.Walter, AW, Mulhern, RK, Gajjar, A, Heideman, RL, Reardon, D, Sanford, RA, et al.Survival and neurodevelopmental outcome of young children with medulloblastoma at St Jude Children’s Research Hospital. J Clin Oncol. 1999; 17:37208.CrossRefGoogle ScholarPubMed
34.Keles, GE, Berger, MS, Srinivasin, J, Kolstoe, DD, Bobola, MS, Silber, JR.Establishment and characterization of four human medulloblastoma-derived cell lines. Oncol Res. 1995; 7: 493503.Google ScholarPubMed
35.Tamaki, M, McDonald, W, Amberger, V, Moore, E, DelMaestro, R.Implantation of C6 astrocytoma cells into collagen type I gels: invasive, proliferative and enzymatic characterizations. J Neurosurg. 1997; 87:6029.CrossRefGoogle ScholarPubMed
36.Paulino, AC, Cha, DT, Barker, JL Jr, Lo, S, Manera, RB.Patterns of failure in relation to radiotherapy fields in supratentorial primitive neuroectodermal tumor. Int J Radiat Oncol Biol Phys. 2004; 58:11716.CrossRefGoogle ScholarPubMed
37.Halperin, EC.Impact of radiation technique upon the outcome of treatment for medulloblastoma. Int J Radiat Oncol Biol Phys. 1996; 36:2339.CrossRefGoogle ScholarPubMed
38.Van Someren, EJ, Swart-Heikens, J, Endert, E, Bisschop, PH, Swaab, DF, Bakker, PJ, et al.Long-term effects of cranial irradiation for childhood malignancy on sleep in adulthood. Eur J Endocrinol. 2004; 150:50310.CrossRefGoogle ScholarPubMed
39.Lew, SM, Morgan, JN, Psaty, E, Lefton, DR, Allen, JC, Abbott, R.Cumulative incidence of radiation-induced cavernomas in longterm survivors of medulloblastoma. J Neurosurg. 2006; 104: 1037.Google ScholarPubMed
40.Lee, JK, Cherlvarajah, R, King, A, David, KM.Rare presentations of delayed radiation injury: a lobar hematoma and a cystic spaceoccupying lesion appearing more than 15 years after cranial radiotherapy: report of two cases. Neurosurgery. 2004; 54: 10103 (discussion 1014).CrossRefGoogle Scholar
41.Baumgartner, JE, Ater, JL, Ha, CS, Kuttesch, JF, Leeds, NE, Fuller, GN, et al.Pathologically proven cavernous angiomas of the brain following radiation therapy for pediatric brain tumors. Pediatr Neurosurg. 2003; 39:2017.CrossRefGoogle ScholarPubMed
42.Reddick, WE, Russell, JM, Glass, JO, Xiong, X, Mulhern, RK, Langston, JW, et al.Subtle white matter volume differences in children treated for medulloblastoma with conventional or reduced dose craniospinal irradiation. Magn Reson Imaging. 2000; 18:78793.CrossRefGoogle ScholarPubMed
43.McMillan, TJ.In vitro radiosensitivity of human medulloblastoma cell lines. J Neurooncol. 1993; 15:912.CrossRefGoogle Scholar
44.Salaroli, R, Di Tomaso, T, Ronchi, A, Ceccarelli, C, Cammelli, S, Cappellini, A, et al.Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin? J Neurooncol. 2008; 90: 24351.CrossRefGoogle ScholarPubMed
45.Lee, YY, Kao, CL, Tsai, PH, Tsai, TH, Chiou, SH, Wu, WF, et al.Caffeic acid phenethyl ester preferentially enhanced radiosensitizing and increased oxidative stress in medulloblastoma cell line. Childs Nerv Syst. 2008; 24:98794.CrossRefGoogle ScholarPubMed
46.Meyer, JJ, Marks, LB, Halperin, EC, Kirkpatrick, JP.Kinetic modeling of tumor growth and dissemination in the craniospinal axis: implications for craniospinal irradiation. Radiat Oncol. 2006; 1:48.CrossRefGoogle ScholarPubMed
47.Ozawa, T, Lu, RM, Hu, LJ, Lamborn, KR, Prados, MD, Deen, DF.Radiopotentiation of human brain tumor cells by sodium phenylacetate. Cancer Lett. 1999; 142:13946.CrossRefGoogle ScholarPubMed
48.Powell, SN, McMillan, TJ, Steel, GG.In vitro radiosensitivity of human medulloblastoma cell lines. J Neurooncol. 1993; 15:912.Google ScholarPubMed
49.Blazek, ER, Foutch, JL, Maki, G.Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 2007; 67:15.CrossRefGoogle ScholarPubMed
50.Tsuboi, K, Tsuchida, Y, Endo, K, Yoshii, Y, Nose, T.Isolation of radiosensitive and radioresistant mutants from a medulloblastoma cell line. Brain Tumor Pathol. 1997; 14:1925.CrossRefGoogle ScholarPubMed
51.Pfister, S, Remke, M, Benner, A, Mendryzk, F, Toedt, G, Felsberg, J, et al.Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol. 2009; 27:162736.CrossRefGoogle ScholarPubMed
52.de Haas, T, Hasselt, N, Troost, D, Caron, H, Popovic, M, Zadravec-Zaletel, L, et al.Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression. Clin Cancer Res. 2008; 14: 415460.CrossRefGoogle ScholarPubMed
53.Sanson, M, Laigle-Donadey, F, Benouaich-Amiel, A.Molecular changes in brain tumors: prognostic and therapeutic impact. Curr Opin Oncol. 2006; 18:62330.CrossRefGoogle ScholarPubMed
54.Min, HS, Lee, YJ, Park, K, Cho, BK, Park, SH.Medulloblastoma: histopathologic and molecular markers of anaplasia and biologic behavior. Acta Neuropathol. 2006; 112:1320.CrossRefGoogle ScholarPubMed
55.Mendryzk, F, Radlwimmer, B, Joos, S, Kokocinski, F, Benner, A, Strange, DE, et al.Genomic and protein expression profiling identifies CDK6 as novel independent prognostic marker in medulloblastoma. J Clin Oncol. 2005; 23:885362.CrossRefGoogle Scholar
56.Eberhart, CG, Kratz, J, Wang, Y, Summers, K, Stearns, D, Cohen, K, et al.Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol. 2004; 63:4419.CrossRefGoogle ScholarPubMed
57.Neben, K, Korshunov, A, Benner, A, Wrobel, G, Hahn, M, Kokocinski, F, et al.Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. Cancer Res. 2004; 64:310311.CrossRefGoogle ScholarPubMed