Hostname: page-component-f7d5f74f5-g2fc4 Total loading time: 0 Render date: 2023-10-04T13:22:10.647Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Immunizations and Autism: A Review of the Literature

Published online by Cambridge University Press:  02 December 2014

Asif Doja*
Division of Neurology, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
Wendy Roberts
Division of Developmental Paediatrics, The Hospital for Sick, Children, Toronto, ON, Canada
Division of Neurology, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1, Canada
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of a temporal correlation between the first notable signs and symptoms of autism and the routine childhood vaccination schedule, many parents have become increasingly concerned regarding the possible etiologic role vaccines may play in the development of autism. In particular, some have suggested an association between the Measles-Mumps-Rubella vaccine and autism. Our literature review found very few studies supporting this theory, with the overwhelming majority showing no causal association between the Measles-Mumps-Rubella vaccine and autism. The vaccine preservative thimerosal has alternatively been hypothesized to have a possible causal role in autism. Again, no convincing evidence was found to support this claim, nor for the use of chelation therapy in autism. With decreasing uptake of immunizations in children and the inevitable occurrence of measles outbreaks, it is important that clinicians be aware of the literature concerning vaccinations and autism so that they may have informed discussions with parents and caregivers.



Plusieurs parents s’inquiètent que des vaccins puissent jouer un rôle étiologique dans le développement de l’autisme à cause d’une corrélation temporelle entre les premiers signes et symptômes décelables de l’autisme et le calendrier vaccinal. Une association entre le vaccine contre la rougeole, les oreillons et la rubéole et l‘autisme a été suggérée. Cette revue de la littérature a retrouvé peu d’études à l’appui de cette théorie, la très grande majorité des études ne démontrant pas d’association entre ce vaccine et l’autisme. On a d’autre part émis l’hypothèse d’un lien causal possible entre le thimerosal, un agent de conservation, et l’autisme. Là non plus, nous n’avons pas trouvé de données convaincantes à l’appui de cette hypothèse ou du traitement par chélation dans l’autisme. Avec la diminution du taux d’immunisation chez les enfants et l’apparition inévitable d’épidémies de rougeole, il est important que les cliniciens soient au courant de la littérapture portant sur la vaccination et l’autisme afin qu’ils puissent en discuter en connaissance de cause avec les parents et les soignants.

Review Articles
Copyright © The Canadian Journal of Neurological 2006


1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington D.C: American Psychiatric Association; 1994.Google ScholarPubMed
2. Bryson, SE, Smith, IM. Epidemiology of autism: Prevalence, associated characteristics and implications for research and service delivery. Mental Retard Dev Disab Res Rev. 1998; 000:17.Google Scholar
3. Canadian Paediatric Society, Infectious Diseases and Immunization Committee. Measles-mumps-rubella vaccine and autistic spectrum disorder: a hypothesis only. Paediatr Child Health. 2001; 6:38791.Google Scholar
4. Fombonne, E. Is there an epidemic of autism? Pediatrics. 2001; 107:4112.CrossRefGoogle ScholarPubMed
5. Roberts, W, Harford, M. Immunization and children at risk for autism. Paediatr Child Health. 2002; 7:62332.CrossRefGoogle ScholarPubMed
6. American Academy of Pediatrics Committee on Infectious Diseases. Red Book. 26th ed. Elk Grove Village Il: American Academy of Pediatrics; 2003.Google ScholarPubMed
7. Filipek, PA, Accardo, JA, Baranek, GT, Cook, EH Jr, Dawson, G, Gordon, B, et al. The screening and diagnosis of autistic spectrum disorders. J Aut Dev Dis. 1999; 29:43984.CrossRefGoogle ScholarPubMed
8. Wakefield, AJ, Murch, SH, Linnell, AJ, Casson, DM, Malik, M, Berelowitz, M, et al. Ileal-lymphoid-nodular hyperplasia, nonspecific colitis, and pervasive developmental disorder in children. Lancet. 1998; 351:63741.CrossRefGoogle Scholar
9. Thompson, NP, Montgomery, SM, Pounder, RE, Wakefield, AJ. Is measles vaccination a risk factor for inflammatory bowel disease? Lancet. 1995; 345:10714.CrossRefGoogle ScholarPubMed
10. Wakefield, AJ, Anthony, A, Murch, SH, Thomson, M, Montgomery, SM, Davies, S, et al. Enterocolitis in children with developmental disorders. Am J Gastro. 2000; 95:228595.CrossRefGoogle ScholarPubMed
11. Halsey, N, Hyman, S. Conference writing panel. Measles, Mumps and Rubella Vaccine and Autism Spectrum Disorder. Report from the New Challenges in Childhood Immunization Conference convened at Oak Brook, Illinois, June 12-13, 2001. Pediatrics. 2001; 107:123.Google Scholar
12. Wakefield, AJ, Pittilo, RM, Sim, R, Cosby, SL, Stephenson, JR, Dhillon, AP, et al. Evidence of persistent measles virus infection in Chron’s disease. J Med Virol. 1993; 39:34553.CrossRefGoogle Scholar
13. Uhlman, V, Martin, CM, Shiels, O, Pilkington, L, Silva, I, Killalea, A, et al. Potential viral pathogenic mechanism for new variant inflammatory bowel disease. Mol Pathol. 2002; 55:8490.CrossRefGoogle Scholar
14. Afzal, MA, Armitage, E, Begley, J, Bentley, ML, Minor, PD, Ghosh, S et al. Absence of detectable measles virus genome sequence in inflammatory bowel disease tissues and peripheral blood lymphocytes. J Med Virol. 1998; 55:2439.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
15. Iizuka, M, Itou, H, Chiba, M, Shirasaka, T, Watanabe, S, et al. The MMR question. Lancet. 2000; 356:160.CrossRefGoogle ScholarPubMed
16. Singh, VK, Lin, SX, Newell, E, Nelson, C. Abnormal measles-mumps-rubella antibodies and CNS autoimmunity in children with autism. J Biomed Sci. 2002; 9: 35964.CrossRefGoogle ScholarPubMed
17. Davis, R. MMR and autism: a report for the Global Advisory Committee on Vaccine Safety. Available from: davis.pdf. [Cited: 2005 Aug 24].Google Scholar
18. Deer, Brian. “Revealed: MMR reseach scandal. The Sunday Times (London). 2004 Feb 22.Google Scholar
19. Murch, SH, Anthony, A, Casson, DH, Malik, M, Berelowitz, M, Dhillon, AP, et al. Retraction of an interpretation. Lancet. 2004; 363:750.CrossRefGoogle ScholarPubMed
20. Wilson, K, Mills, E, Ross, C, McGowan, J, Jaddad, A. Association of autistic spectrum disorder and the measles, mumps and rubella vaccine: a systematic review of current epidemiological evidence. Arch Pediatr Adolesc Med. 2003; 157:62834.CrossRefGoogle ScholarPubMed
21. Madsen, KM, Hvid, A, Vestergaard, M, Schendel, D, Wohlfahrt, J Thornsen, P, et al. A population-based study of measles, mumps, and rubella vaccination and autism. N Engl J Med. 2002; 347:147782.CrossRefGoogle ScholarPubMed
22. Taylor, B, Miller, E, Farringtom, CP, Petropoulos, MC, Favot-Mayaud, I, Li, J, et al. Autism and measles, mumps and rubella vaccine: no epidemiological evidence for a causal association. Lancet. 1999; 353:202629.CrossRefGoogle ScholarPubMed
23. Kaye, JA, Melero-Montes, MM, Jick, H. Mumps, measles and rubella vaccine and the incidence of autism recorded by general practioners: a time trend analysis. BMJ. 2001; 322:4603.CrossRefGoogle Scholar
24. Dales, L, Hammer, SJ, Smith, NJ. Time trends in autism and MMR immunization coverage in California. JAMA. 2001; 286:11835.CrossRefGoogle Scholar
25. Honda, H, Shimizu, Y, Rutter, M. No effect of MMR withdrawal on the incidence of autism: a total population study. J Child Psych Psychol. 2005; 46:57279.CrossRefGoogle ScholarPubMed
26. Smeeth, L, Cook, C, Fombonne, E, Heavey, L, Rodrigues, LC, Smith, PG, et al. MMR vaccination and pervasive developmental disorders: a case-control study. Lancet. 2004; 364:9639.CrossRefGoogle Scholar
27. Makela, A, Nuorti, JP, Petola, H. Neurologic disorders after measles-mumps-rubella vaccination. Pediatrics. 2002; 110:95763.CrossRefGoogle ScholarPubMed
28. Fombonne, E, Chakrabart, S. No evidence for a new variant of measles-mumps-rubella-induced autism. Pediatrics. 2001; 108:18.CrossRefGoogle ScholarPubMed
29. Petola, H, Patja, A, Leinikki, P, Valle, M, Davidkin, I, Paunio, M. No evidence for measles, mumps, and rubella vaccine-associated inflammatory bowel disease or autism in a 14-year prospective study. Lancet. 1998; 351: 13278.CrossRefGoogle Scholar
30. Black, C, Kaye, JA, Jick, H. Relation of childhood gastrointestinal disorders to autism: nested case-control study using data from the UK General Practice Database. BMJ. 2002; 325:41921.CrossRefGoogle Scholar
31. Taylor, B, Miller, E, Lingam, R, Andrews, N, Simmons, A, Stowe, J. Measles, mumps, and rubella vaccination and bowel problems or developmental regression in children with autism: population study. BMJ. 2002; 324:3936.CrossRefGoogle ScholarPubMed
32. Parker, SK, Schwartz, B, Todd, J, Pickering, LK. Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data. Pediatrics. 2004; 114:793804.CrossRefGoogle Scholar
33. US Environmental Protection Agency Mercury study report to congress: volume IV: an assessment of exposure to mercury in the United States. Available from: [Cited: 2005 Aug 24].Google Scholar
34. Food and Drug Administration. Thimerosal in vaccines. Available from [Cited: 2005 Aug 24].Google Scholar
35. Health Canada. Exposure to thimerosal in vaccines used in Canadian infant immunization programs with respect to risk of neurodevelopmental disorders. Can Commun Dis Rep 2002; 28:2869.Google ScholarPubMed
36. Nelson, KB, Bauman, ML. Thimerosal and autism? Pediatrics. 2003; 111: 6749.CrossRefGoogle ScholarPubMed
37. Kerper, LE, Ballagtori, N, Clarkson, TW. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol. 1992;262:R7615.Google ScholarPubMed
38. Bernard, S, Enayati, A, Redwood, L, Roger, H, Binstock, T. Autism: a novel form of mercury poisoning. Med Hypotheses. 2001; 56:46271.CrossRefGoogle ScholarPubMed
39. Ip, P, Wong, V, Ho, M, Lee, J, Wong, W. Mercury exposure in children with autistic spectrum disorder: case-control study. J Child Neurol. 2004; 19:4314.CrossRefGoogle ScholarPubMed
40. Pichichero, ME, Cernichiari, E, Lopreiato, J, Treanor, J. Mercury concentrations and metabolism in infants receiving vaccines containing thimerosall: a descriptive study. Lancet. 2002; 360:173741.CrossRefGoogle ScholarPubMed
41. Holmes, AS, Blaxill, MF, Haley, BE. Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol. 2003; 22:27785.CrossRefGoogle ScholarPubMed
42. Geier, MR, Geier, DA. Neurodevelopmental disorders after thimerosal-containing vaccines: a brief communication. Exp Biol Med. 2003; 228:6604.CrossRefGoogle ScholarPubMed
43. Verstraeten, T, Davis, RL, DeStefano, F, Lieu, TA, Rhodes, PH, Black, SB, et al. Safety of thimerosal-containing vaccines: a two-phased study of computerized health maintenance organization databases. Pediatrics. 2003; 112:103948.Google ScholarPubMed
44. Hviid, A, Stellfeld, M, Wohlfahrt, J, Melbye, M. Association between thimerosal-containing vaccines and autism. JAMA. 2003; 290:17636.CrossRefGoogle ScholarPubMed
45. Andrews, N, Miller, E, Grant, A, Stowe, J, Osborne, V, Taylor, B. Thimerosal exposure in infants and developmental disorders: a retrospective cohort study in the United Kingdom does not support a causal association. Pediatrics. 2004; 114:58491.CrossRefGoogle Scholar
46. Madsen, K, Lauritsen, M, Pedersen, C, Thorsen, P, Plesner, AM, Anderson, PH, et al. Thimerosal and the occurrence of autism? Negative ecological evidence from Danish population-based data. Pediatrics. 2003; 112:6046.CrossRefGoogle ScholarPubMed
47. James, SJ, Cutler, P, Melnyk, S, Jernigan, S, Janak, L, Gaylor, DW, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004; 80:16117.Google ScholarPubMed
48. James, SJ, Slikker, W, Melnyk, S, New, E, Pogribna, M, Jernigan, S. Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology. 2005; 26:18.CrossRefGoogle ScholarPubMed
49. Waly, M, Olteanu, H, Banerjee, R, Choi, SW, Mason, JB, Parker, BS, et al. Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psych. 2004; 1-13.Google Scholar
50. Shannon, M, Levy, S, Sandler, A. Chelation therapy neither safe nor effective as autism treatment. AAP news. 2001:63.Google Scholar
51. The Times. Autistic boy, 5, dies after US therapy. August 26, 2005. Available from: (,2-1751 753,00.html) Cited: October 12, 2005.Google Scholar
52. World Health Organization. Global Advisory Committee on Vaccine Safety, 16-17 December 2002: MMR and autism. Weekly Epidemiological Record Available from: [Cited: 2005 Aug 24].Google Scholar
53. Moms Against Mercury. Available from: http://www.momsagainst [Cited: 2006 May 2].Google Scholar
54. Institute of Medicine of the National Academies. Immunization safety review: Vaccines and autism. Available from [Cited: 2005 Aug 24].Google Scholar
55. Public Health Agency of Canada. Disease information measles Available from: [Cited: 2005 Aug 24].Google Scholar
56. Public Health Agency of Canada. Measles Available from: [Cited: 2005 Aug 24].Google Scholar
57. Department of Health. Statistical bulletin. NHS Immunization Statistics, England. Available from: calHealthCare/StatisticalHealthCareArticle/fs/en?CONTENT_I D=4086491&chk=LUyYGS. [Cited: 2005 Aug 24].Google ScholarPubMed
58. Jansen, VA, Stollenwerk, N, Jensen, HJ, Ramsay, Me, Edmunds, WJ, Rhodes, CJ. Measles outbreaks in populations with declining vaccine uptake. Science. 2003; 301:804.CrossRefGoogle ScholarPubMed