Skip to main content
×
Home

Immunological Aspects of Malignant Gliomas

  • Or Cohen-Inbar (a1) (a2) (a3) (a4) and Menashe Zaaroor (a1) (a2) (a3)
Abstract
Abstract

Glioblastoma Multiforme (GBM) is the most common malignant primary brain neoplasm having a mean survival time of <24 months. This figure remains constant, despite significant progress in medical research and treatment. The lack of an efficient anti-tumor immune response and the micro-invasive nature of the glioma malignant cells have been explained by a multitude of immune-suppressive mechanisms, proven in different models. These immune-resistant capabilities of the tumor result in a complex interplay this tumor shares with the immune system. We present a short review on the immunology of GBM, discussing the different unique pathological and molecular features of GBM, current treatment modalities, the principles of cancer immunotherapy and the link between GBM and melanoma. Current knowledge on immunological features of GBM, as well as immunotherapy past and current clinical trials, is discussed in an attempt to broadly present the complex and formidable challenges posed by GBM.

RÉSUMÉ

Aspects immunologiques des gliomes malins. Le glioblastome multiforme (GBM) est le plus fréquent des néoplasmes cérébraux primaires malins. La survie moyenne est de moins de 24 mois et demeure inchangée malgré les progrès importants réalisés par la recherche médicale et les essais thérapeutiques. L’absence de réponse immunitaire anti-tumeur efficace et la nature micro-invasive des cellules malignes du gliome ont été expliquées par une multitude de mécanismes immunosuppresseurs, démontrés dans différents modèles expérimentaux. L’immunorésistance de la tumeur donne lieu à une interaction complexe entre la tumeur et le système immunitaire. Nous présentons une courte revue de l’immunologie du GBM et nous discutons de ses caractéristiques anatomopathologiques et moléculaires uniques, des modalités actuelles de traitement, des principes de l’immunothérapie du cancer et du lien entre le GBM et le mélanome. Nous exposons les connaissances actuelles sur les caractéristiques immunologiques du GBM ainsi que les essais thérapeutiques antérieurs et actuels d’immunothérapie, afin d’esquisser quels sont les défis considérables et complexes que pose le GBM.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Immunological Aspects of Malignant Gliomas
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Immunological Aspects of Malignant Gliomas
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Immunological Aspects of Malignant Gliomas
      Available formats
      ×
Copyright
Corresponding author
Correspondence to: Or Cohen-Inbar, 137 Yellowstone Drive, Charlottesville, VA 22903, USA. Email: oc2f@virginia.edu
References
Hide All
1. Mao YM, Desmeules M, Semenciw RM, Hill G, Gaudette L, Wigle DT. Increasing brain cancer rates in Canada. CMAJ. 1991;145:1583-1591.
2. Karsy M. Mechanisms of gliomagenesis and glioblastoma multiforme variants. Folia Neuropathol. 2012;50:301-321.
3. Habberstad AH, Lind-Landström T, Sundstrøm S, Torp SH. Primary human glioblastomas - prognostic value of clinical and histopathological parameters. Clin Neuropathol. 2012;31:361-368.
4. Buckner JC. Factors influencing survival in high-grade gliomas. Semin Oncol. 2003;30:10-14.
5. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987-996.
6. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344:114-123.
7. Chaichana KL, Zaidi H, Pendleton C, et al. The efficacy of carmustine wafers for older patients with glioblastoma multiforme: prolonging survival. Neurol Res. 2011;33:759-764.
8. McGirt MJ, Than KD, Weingart JD, et al. Gliadel (BCNU) wafer plus concomitant temozolomide therapy after primary resection of glioblastoma multiforme. J Neurosurg. 2009;110:583-588.
9. Nagasawa DT, Chow F, Yew A, Kim W, Cremer N, Yang I. Temozolomide and other potential agents for the treatment of glioblastoma multiforme. Neurosurg Clin N Am. 2012;23:307-322.
10. Weller M, van den Bent M, Hopkins K, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;s15:e395-e403.
11. Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol. 2015, Sep;11(9):504–14.
12. Drake CG. Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol. 2010;10:580-593.
13. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 anti-body for metastatic melanoma. Clin Cancer Res. 2011;17:6958-6962.
14. Patel MA, Pardoll DM. Concepts of immunotherapy for glioma. J Neurooncol. 2015;123:323-330.
15. Klein J, Sato A. The HLA system. First of two parts. N Engl J Med. 2000;343:702-709.
16. Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305-334.
17. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002;419:845-849.
18. Stefanova I, Dorfman JR, Germain RN. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature. 2002;420:429-434.
19. Davis MM, Krogsgaard M, Huppa JB, et al. Dynamics of cell surface molecules during T cell recognition. Annu Rev Biochem. 2003;72:717-742.
20. Walker PR, Calzascia T, Dietrich PY. All in the head: obstacles for immune rejection of brain tumours. Immunology. 2002;107:28-38.
21. Hohlfeld R, Wekerle H. Immunological update on multiple sclerosis. Curr Opin Neurol. 2001;14:299-304.
22. Dörries R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr Top Microbiol Immunol. 2001;253:219-245.
23. Fischer HG, Bonifas U, Reichmann G. Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol. 2000;164:4826-4834.
24. Rubin LL, Staddon JM. The cell biology of the blood–brain barrier. Annu Rev Neurosci. 1999;22:11-28.
25. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol. 2004;5:292-302.
26. Zafir-Lavie I, Michaeli Y, Reiter Y. Novel antibodies as anticancer agents. Oncogene. 2007;26:3714-3733.
27. Davis ID. An overview of cancer immunotherapy. Immunol Cell Biol. 2000;78:179-195.
28. Princiotta MF, Finzi D, Qian SB, et al. Quantitating protein synthesis, degradation, and endogenous antigen processing, Immunity. 2003;18:343-354.
29. Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res. 2004;64:4980-4986.
30. Zhang JG, Eguchi J, Kruse CA, et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res. 2007;13:566-575.
31. Saikali S, Avril T, Collet B, et al. Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol. 2007;81:139-148.
32. Prins RM, Odesa SK, Liau LM. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res. 2003;63:8487-8491.
33. Silbergeld DL, Rostomily RC, Alvord EC Jr. The cause of death in patients with glioblastoma is multifactorial: clinical factors and autopsyfindings in 117 cases of supratentorial glioblastoma in adults. J Neurooncol. 1991;10:179-185.
34. Aghi MK, Batchelor TT, Louis DN, Barker FG, Curry WT Jr. Decreased rate of infection in glioblastoma patients with allelic loss of chromosome 10q. J Neurooncol. 2009;93:115-120.
35. Parsa AT, Waldron JS, Panner A, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84-88.
36. Hao C, Parney IF, Roa WH, Turner J, Petruk KC, Ramsay DA. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol. 2002;103:171-178.
37. Fecci PE, Mitchell DA, Whitesides JF, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 2006;66:3294-3302.
38. El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neurooncol. 2006;8:234-243.
39. See AP, Parker JJ, Waziri A. The role of regulatory T cells and microglia in Glioblastoma-associated immunosuppression. J Neurooncol. 2015;123:405-412.
40. Choe G, Horvath S, Cloughesy TF, et al. Analysis of the phosphatidylinositol 3’-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res. 2003;63:2742-2746.
41. Ermoian RP, Furniss CS, Lamborn KR, et al. Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res. 2002;8:1100-1106.
42. Louis DN, Holland EC, Cairncross JG. Glioma classification: a molecular reappraisal. Am J Pathol. 2001;159:779-786.
43. Yang L, Ng KY, Lillehei KO. Cell-mediated immunotherapy: a new approach to the treatment of malignant glioma. Cancer Control. 2003;10:138-147.
44. Pistoia V, Morandi F, Wang X, Ferrone S. Soluble HLA-G: Are they clinically relevant? Semin Cancer Biol. 2007;17:469-479.
45. Wiendl H, Mitsdoerffer M, Weller M. Hide-and-seek in the brain: a role for HLA-G mediating immune privilege for glioma cells. Semin Cancer Biol. 2003;13:343-351.
46. Das A, Tan WL, Teo J, Smith DR. Expression of survivin in primary glioblastomas. J Cancer Res Clin Oncol. 2002;128:302-306.
47. Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol. 2006;10:133-146.
48. Zisakis A, Piperi C, Themistocleous MS, et al. Comparative analysis of peripheral and localised cytokine secretion in glioblastoma patients. Cytokine. 2007;39:99-105.
49. Yamanaka R. Dendritic-cell- and peptide-based vaccination strategies for glioma, Neurosurg Rev. 2009;32:265-273.
50. Muragaki Y, Maruyama T, Iseki H, et al. Phase I/IIa trial of autologous formalin-fixed tumor vaccine concomitant with fractionated radiotherapy for newly diagnosed glioblastoma: clinical article. J Neurosurg. 2011;115:248-255.
51. Palu G, Cavaggioni A, Calvi P, et al. Gene therapy of glioblastoma multiforme via combined expression of suicide and cytokine genes: a pilot study in humans. Gene Ther. 1999;6:330-337.
52. Merchant RE, Grant AJ, Merchant LH, Young HF. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer. 1988;62:665-671.
53. Parsa A, Crane C, Wilson S, et al. Autologous tumor derived gp96 evokes a tumor specific immune response in recurrent glioma patients that correlates with clinical response to therapy. In Proceedings of the AACE-NCI-EORTC International Conference Molecular Targets and Cancer Therapeutics 2007.
54. Ampie L, Choy W, Lamano JB, Fakurnejad S, Bloch O, Parsa AT. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neurooncol. 2015;123:441-448.
55. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-2454.
56. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122-133.
57. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311-319.
58. Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol. 2015;33:1430-1437.
59. Rizvi NA, Mazières J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16:257-265.
60. Opdivo (nivolumab) [prescribing information] http://www.opdivo.bmscustomer connect.com/gateway (Bristol-Myers Squibb Company, 2014).
61. Keytruda (pembrolizumab) [prescribing information] http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf (Merck & Co., Inc. 2015).
62. Krauze AV, Myrehaug SD, Chang MG, et al. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. Int J Radiat Oncol Biol Phys. 2015;92:986-992.
63. Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20:5290-5301.
64. Castro MG, Baker GJ, Lowenstein PR. Blocking immunosuppressive checkpoints for glioma therapy: the more the Merrier! Clin Cancer Res. 2014;20:5147-5149.
65. Cohen CJ, Hoffmann N, Farago M, Hoogenboom HR, Eisenbach L, Reiter Y. Direct detection and quantitation of a distinct T-cell epitope derived from tumor-specific epithelial cell-associated mucin using human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Cancer Res. 2002;62:5835-5844.
66. Denkberg G, Cohen CJ, Lev A, Chames P, Hoogenboom HR, Reiter Y. Direct visualization of distinct T cell epitopes derived from a melanoma tumor-associated antigen by using human recombinant antibodies with MHC- restricted T cell receptor-like specificity. Proc Natl Acad Sci. 2002;99:9421-9426.
67. Cohen CJ, Sarig O, Yamano Y, Tomaru U, Jacobson S, Reiter Y. Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J Immunol. 2003;170:4349-4361.
68. Denkberg G, Klechevsky E, Reiter Y. Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC-peptide complex: probing with TCR-like recombinant antibodies. J Immunol. 2002;169:4399-4407.
69. Cohen-Inbar O. Recruitment of Immune Effector Cells against Astrocytoma by MHC-chlrotoxin Chimeric Protein. PhD dissertation, Technion Israel Institute of Technology, 2014.
70. Yu JS, Wheeler CJ, Zeltzer PM, et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell in-filtration. Cancer Res. 2001;61:842-847.
71. Liau LM, Prins RM, Kiertscher SM, et al. Dendritic cell vaccination in glioblastoma patients induces systemic andintracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11:5515-5525.
72. Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28:4722-4729.
73. Schneider T, Gerhards R, Kirches E, Firsching R. Preliminary results of active specific immunization with modified tumor cell vaccine in glioblastoma multiforme. J Neuro-Oncol. 2001;53:39-46.
74. Steiner HH, Bonsanto MM, Beckhove P, et al. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol. 2004;22:4272-4281.
75. Ishikawa E, Tsuboi K, Yamamoto T, et al. Clinical trial of autologous formalin-fixed tumor vaccine for Glioblastoma multiforme patients. Cancer Sci. 2007;98:1226-1233.
76. Bogdahn U, Hau P, Stockhammer G, et al. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncol. 2011;13:132-142.
77. Merchant RE, McVicar DW, Merchant LH, Young HF. Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon- α . Results of a phase I clinical trial. J Neuro-Oncol. 1992;12:75-83.
78. Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurgery. 1989;70:175-182.
79. Colombo F, Barzon L, Franchin E, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther. 2005;12:835-848.
80. Farkkila M, Jaaskelainen J, Kallio M, et al. Randomised, controlled study of intratumoral recombinant γ –interferon treatment in newly diagnosed glioblastoma. Br J Cancer. 1994;70:138-141.
81. Wolff JE, Wagner S, Reinert C, et al. Maintenance treatment with interferon-gamma and low-dose cyclophosphamide for pediatric high-grade glioma. J Neuro-Oncol. 2006;79:315-321.
82. Allen J, Packer R, Bleyer A, Zeltzer P, Prados M, Nirenberg A. Recombinant interferon beta: a phase I-II trial in children with recurrent brain tumors. J Clin Oncol. 1991;9:783-788.
83. Fetell MR, Housepian EM, Oster MW, et al. Intratumor administration of beta-interferon in recurrent malignant gliomas. A Phase I clinical and laboratory study. Cancer. 1990;65:78-83.
84. Mahaley MS, Dropcho EJ, Bertsch L, Tirey T, Gillespie GY. Systemic beta-interferon therapy for recurrent gliomas: a brief report. J Neurosurgery. 1989;71:639-641.
85. Buckner JC, Brown LD, Kugler JW, et al. Phase II evaluation of recombinant interferon alpha and BCNU in recurrent glioma. J Neurosurgery. 1995;82:430-435.
86. Buckner JC, Schomberg PJ, McGinnis WL, et al. A Phase III study of radiation therapy plus carmustine with or without recombinant interferon- α in the treatment of patients with newly diagnosed high-grade glioma. Cancer. 2001;92:420-433.
87. Olson JJ, McKenzie E, Skurski-Martin M, Zhang Z, Brat D, Phuphanich S. Phase I analysis of BCNU-impregnated biodegradable polymer wafers followed by systemic interferon alfa-2b in adults with recurrent glioblastoma multiforme. J Neuro-Oncol. 2008;90:293-299.
88. Okada H, Lieberman FS, Walter KA, et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med. 2007;5:67.
89. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res. 2000;6:2157-2165.
90. Kikuchi T, Akasaki Y, Abe T, et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother. 2004;27:452-459.
91. Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res. 1986;46:2101-2104.
92. Lillehei KO, Mitchell DH, Johnson SD, McCleary EL, Kruse CA. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery. 1991;28:16-23.
93. Hayes RL, Koslow M, Hiesiger EM, et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer. 1995;76:840-852.
94. Dillman RO, Duma CM, Schiltz PM, et al. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother. 2004;27:398-404.
95. Tsurushima H, Liu SQ, Tuboi K, et al. Reduction of end-stage malignant glioma by injection with autologous cytotoxic T lymphocytes. Jap J Cancer Res. 1999;90:536-545.
96. Plautz GE, Miller DW, Barnett GH, et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res. 2000;6:2209-2218.
97. Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in Immunotherapy Presented by the Glioblastoma Multiforme Microenvironment. Clin Dev Immunol. 2011;2011:732413, doi: 10.1155/2011/732413. Epub 2011 Dec 10.
98. Caruso JP, Cohen-Inbar O, Bilsky MH, Gerszten PC, Sheehan JP. Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurg Focus. 2015;38:E6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Neurological Sciences
  • ISSN: 0317-1671
  • EISSN: 2057-0155
  • URL: /core/journals/canadian-journal-of-neurological-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 33
Total number of PDF views: 174 *
Loading metrics...

Abstract views

Total abstract views: 562 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 13th December 2017. This data will be updated every 24 hours.