Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T10:57:09.782Z Has data issue: false hasContentIssue false

Screening for Cognitive Impairment in a Stroke Prevention Clinic Using the MoCA

Published online by Cambridge University Press:  23 September 2014

Lauren M. Mai
Affiliation:
Department of Clinical Neurological Sciences, Western University, London
Wieslaw Oczkowski
Affiliation:
Division of Neurology, Department of Medicine, McMaster University Central South Ontario Regional Stroke Centre, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
Gail Mackenzie
Affiliation:
Central South Ontario Regional Stroke Centre, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
Anatoly Shuster
Affiliation:
Department of Radiology, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
Lauren Wasielesky
Affiliation:
Department of Radiology, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
Arlene Franchetto
Affiliation:
Department of Radiology, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
Michael Patlas
Affiliation:
Department of Radiology, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
Demetrios J. Sahlas*
Affiliation:
Division of Neurology, Department of Medicine, McMaster University Central South Ontario Regional Stroke Centre, Hamilton General Hospital, Hamilton Health Sciences, Hamilton, Ontario, Canada
*
Hamilton General Hospital, Room 706, McMaster Wing, 237 barton Street east, Hamilton, Ontario, L8L 2X2, Canada. email: sahlas@mcmaster.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Screening for cognitive impairment is recommended in patients with cerebrovascular disease. We sought to establish the incidence of cognitive impairment using the Montreal Cognitive Assessment (MoCA) in a cohort of consecutive patients attending our stroke prevention clinic (SPC), and to determine whether a subset of the MoCA could be derived for use in this busy clinical setting.

Methods:

The MoCA was administered to 102 patients. Incidence of cognitive impairment was compared to presenting complaint and final diagnosis. extent of cerebral white matter changes (WMC) was rated using the Age Related White Matter Changes (ARWMC) scale in 80 patients who underwent neuroimaging. A subset of the three most predictive test elements of the MoCA was derived using regression analysis.

Results:

63.7% of patients scored <26/30 on the MoCA, in keeping with cognitive impairment. This was unrelated to the final diagnosis or extent of WMC, although a trend for lower MoCA scores was observed in older patients. A mini-MoCA subscore combining the clock drawing test, five-word delayed recall, and abstraction was highly correlated with the final MoCA score (R=0.901). A score of <7/10 using this 10-point mini-MoCA identified cognitive impairment as defined by the MoCA with a sensitivity of 98.5%, and a specificity of 77.6%.

Conclusions:

Two-thirds of SPC patients demonstrated evidence for cognitive impairment, irrespective of their final diagnosis or the presence of WMC. A mini-MoCA comprised of the clock drawing test, five-word delayed recall, and abstraction represents a potential alternative to the full MoCA in this population.

Résumé:

Résumé:Contexte:

Le dépistage d'un déficit cognitif est recommandé chez les patients atteints d'une maladie cérébrovasculaire. Notre but était d'évaluer l'incidence du déficit cognitif au moyen du test d'évaluation cognitive de Montréal (MoCa) dans une cohorte de patients consécutifs fréquentant notre clinique de prévention de l'accident vasculaire cérébral (CPAVC) et de déterminer si une forme abrégée du test MoCA pourrait être élaborée pour utilisation dans le contexte d'une clinique très achalandée.

Méthode:

Le MoCa a été utilisé chez 102 patients. L'incidence de déficit cognitif a été comparé au motif de consultation et au diagnostic fmal. L'ampleur des changements au niveau de la substance blanche (SB) a été évaluée au moyen de l'échelle Age Related White Matter Changes (ARWMC) chez 80 patients qui ont subi une neuroimagerie. Un sous-groupe des trois éléments les plus prédictifs de l'échelle MoCA ont été identifiés au moyen d'une analyse de régression.

Résultats:

63,7% des patients ont obtenu un score de moins de 26 sur 30 au MoCA, ce qui témoigne de la présence d'un déficit cognitif. Cette observation n'était pas reliée au diagnostic fmal ou à l'ampleur des changements au niveau de la substance blanche. Un score au mini-MoCA constitué du test du dessin de l'horloge, du rappel retardé de cinq mots et de l'abstraction était hautement corrélé au score fmal du MoCA (R = 0,901). Un score de moins de 7 sur 10 à ce mini-MoCA de 10 points identifiait un déficit cognitif tel que défmi par le MoCA, avec une sensibilité de 98,5% et une spécificité de 77,6%.

Conclusions:

Les deux-tiers des patients de la CPAVC avaient des signes de déficit cognitif, quelque soit leur diagnostic fmal ou la présence de changements au niveau de la SB. Un mini-MoCA constitué du test du dessin de l'horloge, du rappel retardé de cinq mots et de l'abstraction pourrait être une alternative au test MoCA complet dans cette population.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Lindsay, MP, Gubitz, G, Bayley, M, et al. Canadian Best Practice Recommendations for Stroke Care (Update 2010). On behalf of the Canadian Stroke Strategy best Practices and Standards Writing Group. 2010; Ottawa, Ontario Canada: Canadian Stroke Network.Google Scholar
2. Jin, YP, Di Legge, S, Ostbye, T, Feightner, JW, Hachinski, V. The reciprocal risks of stroke and cognitive impairment in an elderly population. Alzheimers Dement. 2006;2:1718.Google Scholar
3. Duron, E, Hanon, O. Vascular risk factors, cognitive decline, and dementia. Vasc Health Risk Manag. 2008;4:363–81.Google Scholar
4. Martinic-Popovic, I, Lovrencic-Huzjan, A, Demarin, V. Assessment of Subtle Cognitive Impairment in Stroke-Free Patients with Carotid Disease. Acta Clin Croat. 2009;48:231–40.Google Scholar
5. Malouf, R, Birks, J. Donepezil for vascular cognitive impairment. Cochrane Database of Systematic Reviews 2004, issue 1. Art. No.: CD004395.Google Scholar
6. Roberts, JS, Karlawish, JH, Uhlmann, WR, Peterson, RC, Green, RC. Mild cognitive impairment in clinical care: A survey of American Academy of Neurology members. Neurology. 2010; 75:425–31.CrossRefGoogle Scholar
7. Mok, VC, Wong, KA, Lam, WW, et al. Cognitive impairment and functional outcome after stroke associated with small vessel disease. J Neurol Neurosurg Psychiatry. 2004;75:5606.Google Scholar
8. Au, R, Massaro, JM, Wolf, PA, et al. Association of white matter hyperintensity volume with decreased cognitive functioning: The Framingham Heart Study. Arch Neurol. 2006;63:246–50.Google Scholar
9. de la Torre, JC. Cerebral hypoperfusion, capillary degeneration, and development of alzheimer disease. Alzheimer Dis Assoc Disord. 2000;14:S7281.Google Scholar
10. Schmidt, R, Ropele, S, Enzinger, C, et al. White matter lesion progression, brain atrophy, and cognitive decline: The Austrian Stroke Prevention Study. Ann Neurol. 2005;58:6106.Google Scholar
11. Longstreth, WT Jr., Dulberg, C, Manolio, TA, et al. Incidence, manifestations, and predictors of brain infarcts defined by serial cranial magnetic resonance imaging in the elderly: The cardiovascular health study. Stroke. 2002;33:237682.Google Scholar
12. Soderlund, H, Nilsson, LG, berger, K, et al. Cerebral changes on MRI and cognitive function: The Cascade Study. Neurobiol Aging. 2006;27:1623.CrossRefGoogle ScholarPubMed
13. Vermeer, SE, Longstreth, WT Jr., Koudstaal, PJ. Silent brain infarcts: A systematic review. Lancet Neurol. 2007;6:6119.CrossRefGoogle ScholarPubMed
14. O’Sullivan, M, Morris, RG, Huckstep, B, Jones, DK, Williams, SC, Markus, HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 2004;75:4417.CrossRefGoogle ScholarPubMed
15. Nasreddine, ZS, Phillips, NA, Bedirian, V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:6959.Google Scholar
16. Pendlebury, ST, Cuthbertson, FC, Welch, SJ, Mehta, Z, Rothwell, PM. Underestimation of cognitive impairment by mini-mental state examination versus the montreal cognitive assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41:1290–3.Google Scholar
17. Pendlebury, ST, Mariz, J, Bull, L, Mehta, Z, Rothwell, PM. MoCA, ACE-R, and MMSE versus the National institute of Neurological Disorders and Stroke-Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards Neuropsychological Battery After TIA and Stroke. Stroke. 2012; 43:4649.Google Scholar
18. Hachinski, V, Iadecola, C, Petersen, RC, et al. National Institute of Neurological Disorders and Stroke: Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006;37:222041.Google Scholar
19. Godefroy, O, Fickl, A, Roussel, M, et al. Is the Montreal Cognitive Assessment superior to the Mini-Mental State Examination to detect poststroke cognitive impairment? A study with neuropsychological evaluation. Stroke. 2011;42:1712–6.Google Scholar
20. Dong, YH, Venketasubramanian, N, Chan, BPL, et al. Brief screening tests during acute admission in patients with mild stroke are predictive of vascular cognitive impairment 3-6 months after stroke. J Neurol Neurosurg Psychiatry 2012;83:5805.Google Scholar
21. Vujovic-Zotovic, N, Sahlas, DJ, Norris, JW. Acute migraine attacks misdiagnosed as transient ischemic attacks. Canadian Journal of Neurological Sciences 2003;30 Suppl. 2:S76.Google Scholar
22. Engleman, HM, Kingshott, RN, Martin, SE, Douglas, NJ. Cognitive function in the sleep apnea/hypopnea syndrome (SAHS). Sleep. 2000;23:S1028.Google Scholar
23. Rossetti, HC, Lacritz, LH, Cullum, CM, Weiner, MF. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2011;77:1272–5.Google Scholar
24. Unverzagt, FW, McClure, LA, Wadley, VG, et al. Vascular risk factors and cognitive impairment in a stroke-free cohort. Neurology. 2011;77:172936.Google Scholar
25. Kivipelto, M, Solomon, A, Rovio, S, et al. Changes in vascular risk factors from midlife to late life and white matter lesions: a 20-year follow-up study. Dement Geriatr Cogn Disord. 2011;31: 119–25.Google Scholar
26. Ismail, Z, Rajji, TK, Shulman, KI. Brief cognitive screening instruments: an update. Int J Geriatr Psychiatry. 2010;25:111–20.Google Scholar
27. Rapp, MA, Rieckmann, N, Gutzmann, H, Folstein, MF. Micro-Mental Test - a short method of dementia screening. Der Nervenarzt. 2002;73:839–44.Google Scholar