Skip to main content Accessibility help
×
Home

Skeletal Muscle Metabolic Dysfunction in Obesity and Metabolic Syndrome

  • Greg D. Wells (a1), Michael D. Noseworthy (a2), Jill Hamilton (a3), Mark Tarnopolski (a4) and Ingrid Tein (a5)...

Abstract:

Obesity and the related metabolic syndrome have become a worldwide epidemic. Inactivity appears to be a primary causative factor in the pathogenesis of this obesity and metabolic syndrome. There are two possible, perhaps not mutually exclusive, events that may lead to intramyocellular lipid accumulation and mitochondrial dysfunction in patients with obesity. First, obesity, with high intake-associated lipid accumulation in muscle may interfere with cellular mitochondrial function through generation of reactive oxygen species leading to lipid membrane peroxidative injury and disruption of mitochondrial membrane-dependent enzymes. This in turn leads to impaired oxidative metabolism. Secondly, a primary defect in mitochondrial oxidative metabolism may be responsible for a reduction in fatty acid oxidation leading to intramyocellular lipid accumulation as a secondary event. Non-invasive techniques such as proton (1H) and phosphorus (31P) magnetic resonance spectroscopy, coupled with specific magnetic resonance imaging techniques, may facilitate the investigation of the effects of various ergometric interventions on the pathophysiology of obesity and the metabolic syndrome. Exercise has positive effects on glucose metabolism, aerobic metabolism, mitochondrial density, and respiratory chain proteins in patients with metabolic syndrome, and we propose that this may be due to the exercise effects on AMP kinase, and a prospective physiological mechanism for this benefit is presented. A physiological model of the effect of intramyocellular lipid accumulation on oxidative metabolism and insulin mediated glucose uptake is proposed.

RÉSUMÉ:

L'obésité et le syndrome métabolique, deux entités qui sont reliées, sont devenus épidémiques à l'échelle mondiale. L'inactivité semble être le facteur causal primaire. Il existe deux possibilités, qui ne sont peut-être pas mutuellement exclusives, qui peuvent conduire à une accumulation intramyocellulaire de lipides et à une dysfonction mitochondriale chez les patients obèses. D'une part l'obésité, avec une accumulation musculaire de lipides suite à une consommation élevée de lipides, peut interférer avec la fonction mitochondriale à cause de la production de radicaux libres qui provoquent la peroxydation des lipides membranaires et la perturbation des enzymes mitochondriales dépendantes de la membrane entravant ainsi le métabolisme oxydatif. D'autre part, un défaut primaire dans le métabolisme oxydatif mitochondrial pourrait être responsable d'une diminution de l'oxydation des acides gras, ce qui entraîrait secondairement une accumulation lipidique intramyocellulaire. Des techniques non-effractives comme la spectroscopie RMN du proton (1H) et du phosphore (31P), couplées à des techniques spécifiques d'imagerie par résonance magnétique pourraient faciliter l'étude des effets de différentes interventions ergométriques sur la physiopathologie de l'obésité et du syndrome métabolique. L'exercice a des effets positifs sur le métabolisme du glucose, le métabolisme aérobique, la densité mitochondriale et les protéines de la chaî respiratoire chez les patients atteints du syndrome métabolique, ce qui porte à croire que l'exercice influence la kinase activée par l'AMP et nous proposons un mécanisme physiologique pour l'expliquer. Nous présentons également un modèle physiologique de l'effet de l'accumulation lipidique intramyocellulaire sur le métabolisme oxydatif et sur la captation du glucose médiée par l'insuline.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Skeletal Muscle Metabolic Dysfunction in Obesity and Metabolic Syndrome
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Skeletal Muscle Metabolic Dysfunction in Obesity and Metabolic Syndrome
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Skeletal Muscle Metabolic Dysfunction in Obesity and Metabolic Syndrome
      Available formats
      ×

Copyright

References

Hide All
1. Vanasse, A, Demers, M, Hemiari, A, Courteau, J. Obesity in Canada: where and how many? Int J Obes. 2005; 30(4):67783.
2. Dietitians of Canada, Canadian Paediatric Society, College of Family Physicians of Canada, Community Health Nurses Association of Canada. The use of growth charts for assessing and monitoring growth in Canadian infants and children. Can J Diet Pract Res. 2004; 65(1):2232.
3. Tremblay, MS, Willms, JD. Secular trends in the body mass index of Canadian children. CMAJ. 2000; 163(11):142913.
4. Sheilds, M. Overweight and obesity among children and youth. Health Rep. 2006 Aug; 17(3):2742.
5. Caprio, S, Genel, M. Confronting the epidemic of childhood obesity. Pediatrics. 2005; 115(2):4945.
6. Kaur, H, Hyder, ML, Poston, WS. Childhood overweight: An expanding problem. Treat Endocrinol. 2003; 2(6):37588.
7. Strock, GA, Cottrell, ER, Abang, AE, Buschbacher, RM, Hannon, TS. Childhood obesity: A simple equation with complex variables. J Long Term Eff Med Implants 2005; 15(1):1532.
8. Clement, K, Ferre, P. Genetics and the pathophysiology of obesity. Pediatr Res. 2003; 53(5):7215.
9. Weiss, R, Dziura, J, Burgert, TS, Tamborlane, WV, Taksali, SE, Yeckel, CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004; 350(23):236274.
10. Sinha, R, Fisch, G, Teague, B, Tamborlane, WV, Banyas, B, Allen, K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002; 346(11):80210.
11. Speiser, PW, Rudolf, MC, Anhalt, H, Camacho-Hubner, C, Chiarelli, F, Eliakim, A, et al. Childhood obesity. J Clin Endocrinol Metab. 2005; 90(3):18787.
12. Bjorntorp, P. Abdominal obesity and the metabolic syndrome. Ann Med. 1992; 24(6):4658.
13. Weiss, R, Dufour, S, Taksali, SE, Tamborlane, WV, Petersen, KF, Bonadonna, RC, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet. 2003; 362(9388):9517.
14. Bonen, A, Dohm, GL, van Loon, LJ. Lipid metabolism, exercise and insulin action. Essays Biochem. 2006; 42: 4759.
15. Kelley, DE, Goodpaster, B, Wing, RR, Simoneau, JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999; 277(6 Pt 1):E113041.
16. Pan, DA, Lillioja, S, Kriketos, AD, Milner, MR, Baur, LA, Bogardus, C, et al. Skeletal muscle triglyceride levels are inversely related to insulin action. Diabetes. 1997; 46(6):9838.
17. Malenfant, P, Joanisse, DR, Theriault, R, Goodpaster, BH, Kelley, DE, Simoneau, JA. Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord. 2001; 25(9): 131621.
18. McGarry, JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002; 51(1):718.
19. Simoneau, JA, Colberg, SR, Thaete, FL, Kelley, DE. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J. 1995; 9(2):2738.
20. Kim, JY, Hickner, RC, Cortright, RL, Dohm, GL, Houmard, JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab. 2000; 279(5):E103944.
21. Simoneau, JA, Veerkamp, JH, Turcotte, LP, Kelley, DE. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J. 1999; 13(14):205160.
22. Ravikumar, B, Carey, PE, Snaar, JE, Deelchand, DK, Cook, DB, Neely, RD, et al. Real-time assessment of postprandial fat storage in liver and skeletal muscle in health and type 2 diabetes. Am J Physiol Endocrinol Metab. 2005; 288(4):E78997.
23. Goodpaster, BH, Kelley, DE. Skeletal muscle triglyceride: marker or mediator of obesity-induced insulin resistance in type 2 diabetes mellitus?. Curr Diab Rep. 2002; 2(3):21622.
24. Shulman, GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000; 106(2):1716.
25. Bonadonna, RC, Del Prato, S, Bonora, E, Saccomani, MP, Gulli, G, Natali, A, et al. Roles of glucose transport and glucose phosphorylation in muscle insulin resistance of NIDDM. Diabetes. 1996; 45(7):91525.
26. Kelley, DE, Mintun, MA, Watkins, SC, Simoneau, JA, Jadali, F, Fredrickson, A, et al. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996; 97(12):270513.
27. Saltiel, AR, Kahn, CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414(6865):799806.
28. Kelley, DE, He, J, Menshikova, EV, Ritov, VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002; 51(10):294450.
29. Brechtel, K, Dahl, DB, Machann, J, Bachmann, OP, Wenzel, I, Maier, T, et al. Fast elevation of the intramyocellular lipid content in the presence of circulating free fatty acids and hyperinsulinemia: a dynamic 1H-MRS study. Magn Reson Med. 2001; 45(2):17983.
30. Boden, G, Chen, X, Rosner, J, Barton, M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization. Diabetes. 1995; 44(10):123942.
31. Roden, M, Price, TB, Perseghin, G, Petersen, KF, Rothman, DL, Cline, GW, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest. 1996; 97(12):285965.
32. Man, ZW, Hirashima, T, Mori, S, Kawano, K. Decrease in triglyceride accumulation in tissues by restricted diet and improvement of diabetes in otsuka long-evans tokushima fatty rats, a non-insulindependent diabetes model. Metabolism. 2000; 49(1):10814.
33. Ohneda, M, Inman, LR, Unger, RH. Caloric restriction in obese prediabetic rats prevents beta-cell depletion, loss of beta-cell GLUT 2 and glucose incompetence. Diabetologia. 1995; 38(2):1739.
34. Goodpaster, BH, Wolf, D. Skeletal muscle lipid accumulation in obesity, insulin resistance, and type 2 diabetes. Pediatr Diabetes. 2004; 5(4):21926.
35. Gavrilova, O, Marcus-Samuels, B, Graham, D, Kim, JK, Shulman, GI, Castle, AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000; 105(3):2718.
36. Kim, JK, Gavrilova, O, Chen, Y, Reitman, ML, Shulman, GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000a; 275(12):845660.
37. Hevener, AL, He, W, Barak, Y, Le, J, Bandyopadhyay, G, Olson, P, et al. Muscle-specific Pparg deletion causes insulin resistance. Nature Med. 2003; 9(12):14917.
38. Norris, AW, Chen, L, Fisher, SJ, Szanto, I, Ristow, M, Jozsi, AC, et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest. 2003; 112(4):60818.
39. Palming, J, Sjöholm, K, Jernås, M, Lystig, TC, Gummesson, A, Romeo, S, et al. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J Clin Endocrinol Metab. 2007; 92(6):234652.
40. Shimomura, I, Funahashi, T, Takahashi, M, Maeda, K, Kotani, K, Nakamura, T, et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nature Med. 1996; 2(7):8003.
41. Hotamisligil, GS, Shargill, NS, Spiegelman, BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 1993; 259(5091):8791.
42. Steppan, CM, Bailey, ST, Bhat, S, Brown, EJ, Banerjee, R, Wright, CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001; 409(6818):30712.
43. Friedman, JM, Halaas, JL. Leptin and the regulation of body weight in mammals. Nature. 1998; 395(6704):76370.
44. Berg, AH, Combs, TP, Scherer, PE. ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab. 2002; 13(2):849.
45. Yang, Q, Graham, TE, Mody, N, Preitner, F, Peroni, OD, Zabolotny, JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005; 436(7049):35662.
46. Kershaw, EE, Flier, JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004; 89(6):254856.
47. Yamauchi, T, Kamon, J, Waki, H, Terauchi, Y, Kubota, N, Hara, K, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 2001; 7(8):9416.
48. Rudich, A, Tirosh, A, Potashnik, R, Hemi, R, Kanety, H, Bashan, N. Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes. 1998; 47(10): 15629.
49. Maddux, BA, See, W, Lawrence, JC Jr, Goldfine, AL, Goldfine, ID, Evans, JL. Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of alpha-lipoic acid. Diabetes. 2001; 50(2):40410.
50. Matsuoka, T, Kajimoto, Y, Watada, H, Kaneto, H, Kishimoto, M, Umayahara, Y, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest. 1997; 99(1), 14450.
51. Furukawa, S, Fujita, T, Shimabukuro, M, Iwaki, M, Yamada, Y, Nakajima, Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114(12):175261.
52. Kaasik, A, Veksler, V, Boehm, E, Novotova, M, Minajeva, A, Ventura-Clapier, R. Energetic crosstalk between organelles: Architectural integration of energy production and utilization. Circ Res. 2001; 89(2):1539.
53. Hood, DA. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol. 2001; 90(3):113757.
54. Saltiel, AR. Series introduction: The molecular and physiological basis of insulin resistance: emerging implications for metabolic and cardiovascular diseases. J Clin Invest. 2000; 106(2):1634.
55. Shepherd, PR, Kahn, BB. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999; 341(4):24857.
56. Colberg, SR, Simoneau, JA, Thaete, FL, Kelley, DE. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J Clin Invest. 1995; 95(4):184653.
57. Sun, G, Ukkola, O, Rankinen, T, Joanisse, DR, Bouchard, C. Skeletal muscle characteristics predict body fat gain in response to overfeeding in never-obese young men. Metabolism. 2002; 51(4):4516.
58. Ritov, VB, Menshikova, EV, He, J, Ferrell, RE, Goodpaster, BH, Kelley, DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005; 54(1):814.
59. Petersen, KF, Befroy, D, Dufour, S, Dziura, J, Ariyan, C, Rothman, DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003; 300(5622):11402.
60. Stump, CS, Short, KR, Bigelow, ML, Schimke, JM, Nair, KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA. 2003; 100(13):79968001.
61. Tein, I. Metabolic myopathies. In: Swaiman, KF, Ashwal, S, Ferriero, D, editors. Pediatric Neurology. 4th ed. Mosby-Yearbook Inc; 2006 p. 202373.
62. Mootha, VK, Lindgren, CM, Eriksson, KF, Subramanian, A, Sihag, S, Lehar, J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3):26773.
63. Patti, ME, Butte, AJ, Crunkhorn, S, Cusi, K, Berria, R, Kashyap, S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA. 2003; 100(14): 846671.
64. Petersen, KF, Dufour, S, Befroy, D, Garcia, R, Shulman, GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004; 350(7): 66471.
65. Vignais, PV. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta. 1976; 456(1):138.
66. Lemasters, JJ, Sowers, AE. Phosphate dependence and atractyloside inhibition of mitochondrial oxidative phosphorylation. The ADP-ATP carrier is rate-limiting. J Biol Chem. 1979; 254(4):124851.
67. Shug, A, Lerner, E, Elson, C, Shrago, E. The inhibition of adenine nucleotide translocase activity by oleoyl CoA and its reversal in rat liver mitochondria. Biochem Biophys Res Commun. 1971; 43(3):55763.
68. Pande, SV, Blanchaer, MC. Reversible inhibition of mitochondrial adenosine diphosphate phosphorylation by long chain acyl coenzyme A esters. J Biol Chem. 1971; 246(2):40211.
69. Kaukonen, J, Juselius, JK, Tiranti, V, Kyttala, A, Zeviani, M, Comi, GP, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science. 2000; 289(5480):7825.
70. Esposito, LA, Melov, S, Panov, A, Cottrell, BA, Wallace, DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA. 1999; 96(9):48205.
71. Marzo, I, Brenner, C, Kroemer, G. The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother. 1998; 52(6):24851.
72. Palmieri, L, Alberio, S, Pisano, I, Lodi, T, Meznaric-Petrusa, M, Zidar, J, et al. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum Mol Genet. 2005; 14(20):307988.
73. McKenzie, M, Liolitsa, D, Hanna, MG. Mitochondrial disease: mutations and mechanisms. Neurochem Res. 2004; 29(3): 589600.
74. Doudican, NA, Song, B, Shadel, GS, Doetsch, PW. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae. Mol Cell Biol. 2005; 25(12): 5196204.
75. Pitkanen, S, Robinson, BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest. 1996; 98(2):34551.
76. Boveris, A, Oshino, N, Chance, B. The cellular production of hydrogen peroxide. Biochem J. 1972; 128(3):61730.
77. Cheeseman, KH, Slater, TF. An introduction to free radical biochemistry. Br Med Bull. 1993; 49(3):48193.
78. Mak, IT, Kramer, JH, Weglicki, WB. Potentiation of free radicalinduced lipid peroxidative injury to sarcolemmal membranes by lipid amphiphiles. J Biol Chem. 1986; 261(3):11537.
79. Howald, H, Boesch, C, Kreis, R, Matter, S, Billeter, R, Essen-Gustavsson, B, et al. Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and (1)H-MR spectroscopy. J Appl Physiol. 2002; 92(6):226472.
80. Tarnopolsky, MA, Rennie, CD, Robertshaw, HA, Fedak-Tarnopolsky, SN, Devries, MC, Hamadeh, MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007; 292(3):R12718.
81. Jacob, S, Machann, J, Rett, K, Brechtel, K, Volk, A, Renn, W, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999; 48(5):11139.
82. Sinha, R, Dufour, S, Petersen, KF, LeBon, V, Enoksson, S, et al. Assessment of skeletal muscle triglyceride content by 1H nuclear magnetic resonance spectroscopy in lean and obese adolescents. Diabetes. 2002; 51: 10227.
83. Decombaz, J, Schmitt, B, Ith, M, Decarli, B, Diem, P, Kreis, R, et al. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2001; 281(3):R7609.
84. Boesch, C, Machann, J, Vermathen, P, Schick, F. Role of proton MR for the study of muscle lipid metabolism. NMR Biomed. 2006; 19: 96888.
85. Weis, J, Johansson, L, Courivaud, F, Karlsson, FA, Ahlstrom, H. Quantification of intramyocellular lipids in obese subjects using spectroscopic imaging with high spatial resolution. MAGMA. 2007; 57: 228.
86. Prompers, JJ, Jeneson, JA, Drost, MR, Oomens, CC, Strijkers, GJ, Nicolay, K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed. 2006; 19(7):92753.
87. Bianchi, C, Penno, G, Romero, F, Del Prato, S, Miccoli, R. Treating the metabolic syndrome. Expert Rev Cardiovasc Ther. 2007; 5(3):491506.
88. Ildiko, V, Zsofia, M, Janos, M, Andreas, P, Dora, NE, Andras, P, et al. Activity-related changes of body fat and motor performance in obese seven-year-old boys. J Physiol Anthropol. 2007; 26(3): 3337.
89. Meyer, AA, Kundt, G, Lenschow, U, Schuff-Werner, P, Kienast, W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol. 2006; 48(9):186570.
90. Dishman, RK, Berthoud, HR, Booth, FW, Cotman, CW, Edgerton, VR, Fleshner, MR, et al. Neurobiology of exercise. Obesity (Silver Spring). 2006; 14(3):34556.
91. Hardie, DG. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc. 2004; 36(1):2834.
92. Ruderman, NB, Keller, C, Richard, AM, Saha, AK, Luo, Z, Xiang, X, et al. Interleukin-6 regulation of AMP-activated protein kinase. Potential role in the systemic response to exercise and prevention of the metabolic syndrome. Diabetes. 2006; 55 S2:S4854.
93. Fujii, N, Hayashi, T, Hirshman, MF, Smith, JT, Habinowski, SA, Kaijser, L, et al. Exercise induces isoform-specific increase in 5’AMP-activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun. 2000; 273(3):11505.
94. Chen, ZP, McConell, GK, Michell, BJ, Snow, RJ, Canny, BJ, Kemp, BE. AMPK signaling in contracting human skeletal muscle: Acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000; 279(5):E12026.
95. Hayashi, T, Hirshman, MF, Kurth, EJ, Winder, WW, Goodyear, LJ. Evidence for 5’ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes. 1998; 47(8):136973.
96. Bergeron, R, Russell, RR3rd, Young, LH, Ren, JM, Marcucci, M, Lee, A, et al. Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol. 1999; 276(5 Pt 1):E93844.
97. Musi, N, Fujii, N, Hirshman, MF, Ekberg, I, Froberg, S, Ljungqvist, O, et al. AMP-activated protein kinase (AMPK) is activated in muscle of subjects with type 2 diabetes during exercise. Diabetes. 2001; 50(5):9217.
98. Schenk, S, Horowitz, JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007; 117(6):16908.
99. Hutber, CA, Hardie, DG, Winder, WW. Electrical stimulation inactivates muscle acetyl-CoA carboxylase and increases AMP-activated protein kinase. Am J Physiol. 1997; 272(2 Pt 1): E2626.
100. Vavvas, D, Apazidis, A, Saha, AK, Gamble, J, Patel, A, Kemp, BE, et al. Contraction-induced changes in acetyl-CoA carboxylase and 5-AMP-activated kinase in skeletal muscle. J Biol Chem. 1997; 272(20):1325561.
101. Bergeron, R, Ren, JM, Cadman, KS, Moore, IK, Perret, P, Pypaert, M, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001; 281(6):E13406.
102. Tarnopolsky, MA. Exercising women throw a wrench in the gears of the AMPK-lipid oxidation link. J Physiol. 2006 Jul 1;574 (Pt 1):1.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed