Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T18:44:39.062Z Has data issue: false hasContentIssue false

A Unique Model for Ultrasound Assessment of Optic Nerve Sheath Diameter

Published online by Cambridge University Press:  23 September 2014

Frederick A. Zeiler*
Affiliation:
Section of Neurosurgery, University of Manitoba, Winnipeg, Manitoba
Bertram Unger
Affiliation:
Department of Surgery, Section of Critical Care Medicine, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba Department of Medical Education, University of Manitoba, Winnipeg, Manitoba
Andreas H. Kramer
Affiliation:
Critical Care, University of Calgary, Calgary, Alberta, Canada Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Andrew W. Kirkpatrick
Affiliation:
Section of General Surgery, Department of Surgery, Regional Trauma Services, University of Calgary, Calgary, Alberta, Canada Critical Care, University of Calgary, Calgary, Alberta, Canada
Lawrence M. Gillman
Affiliation:
Section of General Surgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba Department of Surgery, Section of Critical Care Medicine, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba
*
Section of Neurosurgery, Dept of Surgery, University of Manitoba, GB-1 Health Sciences Center, 820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada. Email: umzeiler@cc.umanitoba.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Ultrasonic assessment of optic nerve sheath diameter (ONSD) as a non-invasive measure of intracranial pressure (ICP) has been evaluated in the literature as a potential valid technique for rapid ICP estimation in the absence of invasive intracranial monitoring. The technique can be challenging to perform and little literature exists surrounding intra-operator variability.

Objectives:

In this study we describe the creation of a novel model of ONSD to be utilized in ultrasound training of this technique. We demonstrate the realistic ultrasonographic images created utilizing this novel model.

Methods:

We designed ocular models composed of gelatin spheres and variable three dimensional printed cylinders, which simulate the globe of the eye and variable ONSD's respectively. These models were suspended in a gelatin background and ultrasound of the ONSD was conducted using standard techniques described in the literature.

Results:

This model produces clear and accurate representation of ONSD that closely mimics in vivo images. It is affordable and easy to produce in large quantities, portending its use in an educational environment.

Conclusions:

Utilizing the standard linear array ultrasound probe for ONSD measurements in our model provided realistic images comparable to in vivo. This provides an affordable and exciting means to test intra- and inter- operator variability in a standardized environment. Knowing this, we can further apply this novel model of ONSD to ultrasound teaching and training courses with confidence in its ability and the technique's ability to produce consistent results.

Résumé:

Résumé:Contexte:

L'évaluation par ultrasonographie du diamètre de la gaine du nerf optique (DGNO) comme mesure non effractive de la pression intracrânienne (PIC) est considérée selon la littérature comme une technique potentiellement valide d'estimation rapide de la PIC, en l'absence de monitoring intracrânien effractif. Effectuer la technique peut présenter un défi et il y a peu de publications concernant la variabilité intra-opérateur.

Objectifs:

Nous décrivons un nouveau modèle d'évaluation par ultrasonographie du DGNO que nous avons conçu pour l'enseignement de cette technique. Nous montrons des images ultrasonographiques réalistes créées au moyen de ce nouveau modèle.

Méthode:

Nous avons conçu des modèles oculaires composés de sphères de gélatine et des cylindres imprimés variables à trois dimensions qui simulent respectivement le globe oculaire et différents DGNO. Ces modèles sont suspendus devant une toile de fond de gélatine et l'ultrasonographie du DGNO est ensuite effectuée par la technique standard décrite dans la littérature.

Résultats:

Ce modèle donne une représentation claire et exacte du DGNO qui imite fidèlement les images captées in vivo. Il est d'un prix abordable et facile à produire en grande quantité, ce qui laisse présager qu'il sera utilisé pour l'enseignement.

Conclusions:

L'utilisation de la sonde à ultrasons en réseau linéaire pour la mesure du DGNO dans notre modèle a donné des images réaliste, comparables à celles obtenues in vivo. C'est donc un moyen abordable et attrayant d'évaluation de la variabilité intra et inter opérateur dans un environnement standardisé. Nous pouvons donc utiliser ce nouveau modèle de DGNO pour l'enseignement et l'entraînement du personnel tout en étant confiant que le modèle et la technique produiront des résultats concordants.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Gangemi, M, Cennamo, G, Maiuri, F, D’Andrea, F. Echographic measurement of optic nerve in patients with intracranial hypertension. Neurochirurgia (Stuttg). 1987;30(2):53–5.Google Scholar
2. Rajajee, V, Vanaman, M, Fletcher, JJ, Jacobs, TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15(3):506–15.Google Scholar
3. Strumwasser, A, Kwan, RO, Yeung, L, et al. Sonographic optic nerve sheath diameter as an estimate of intracranial pressure in adult trauma. J Surg Res. 2011;170(2):265–71.Google Scholar
4. Dubourg, J, Javouhey, E, Geeraerts, T, Messerer, M, Kassai, B. Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med. 2011;37(7):105968.Google Scholar
5. Moretti, R, Pizzi, B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand. 2011;55(6): 644–52.CrossRefGoogle ScholarPubMed
6. Kimberly, HH, Shah, S, Marill, K, Noble, V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med. 2008;15(2):2014.Google Scholar
7. Tayal, VS, Neulander, M, Norton, HJ, Foster, T, Saunder, T, Blaivas, M. Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Annal Emerg Med. 2007; 49(4):508–14.Google Scholar
8. Blaivas, M, Theodoro, D, Sierzenski, PR. Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med. 2003;10(4):376–81.CrossRefGoogle ScholarPubMed
9. Newman, WD, Hollman, AS, Dutton, GN, Carachi, R. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol. 2002;86:110913.CrossRefGoogle ScholarPubMed
10. Geeraerts, T, Merceron, S, Benhamou, D, Vigue, B, Duranteau, J. Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med. 2008;34:2062–7.CrossRefGoogle ScholarPubMed
11. Goel, RS, Goyal, NK, Dharap, SB, Kumar, M, Gore, MA. Utility of optic nerve ultrasonography in head injury. Int J Care Injured. 2008;39:519–24.Google Scholar
12. Wantanabe, A, Kinouchi, H, Horikoshi, T, Uchida, M, Ishigame, K. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg. 2008;109:2558.Google Scholar
13. Moretti, R, Pizzi, B. Ultrasonography of the optic nerve in neurocritically ill patients. Acta Anaesthesiol Scand. 2011;55: 644–52.Google Scholar
14. Ballantyne, SA, O’Neill, G, Hamilton, R, Hollman, AS. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound. 2002;15:1459.CrossRefGoogle ScholarPubMed
15. Potgieter, DW, Kippin, A, Ngu, F, McKean, C. Can accurate ultrasonographic measurement of the optic nerve sheath diameter (a non-invasive measure of intracranial pressure) be taught to novice operators in a single training session? Anaesth Intensive Care. 2011;39(1):95100.CrossRefGoogle Scholar
16. Bauerle, J, Lochner, P, Kaps, M, Nedelmann, M. Intra- and interobserver reliability of sonographic assessment of the optic nerve sheath diameter in healthy adults. J Neuroimaging. 2012 Jan;22(1):42–5. Epub 2010 Dec 1.CrossRefGoogle ScholarPubMed
17. Bude, RO, Adler, RS. An easily made, low-cost, tissue-like ultrasound phantom material. J Clin Ultrasound. 1995;23:2713.Google Scholar
18. Jafri, F, Runde, D, Saul, T, Lewiss, RE. An inexpensive and easy simulation model of ocular ultrasound that mimics normal anatomy as well as abnormal ophthalmologic conditions. J Ultrasound Med. 2011;30:569–73.CrossRefGoogle ScholarPubMed