Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T16:40:02.931Z Has data issue: false hasContentIssue false

Bone Measurement, Physical Activity and the Aging Skeleton

Published online by Cambridge University Press:  29 November 2010

Robert G. McCulloch
Affiliation:
University of Regina

Abstract

Considerable research on osteoporosis has recently focused on the prevention of bone loss in the later years. Researchers and clinicians are now able to accurately measure the effects of therapies and preventive strategies on the skeleton. It has been suggested that regular physical activity will be one of the valuable strategies in maintaining bone density and preventing osteoporosis. This paper will review the quantitative techniques available for bone density assessment and provide an overview of the recent cross-sectional and longitudinal studies related to the potential benefits of physical activity on the aging skeleton.

Résumé

De nombreuses recherches sur l'ostéoporose ont récemment été axées sur la prévention de la diminution de la densité osseuse à un âge avancé. Chercheurs et cliniciens peuvent maintenant mesurer avec précision les effets des thérapies et des traitements de prévention sur le squelette. L'activité physique régulière est donc suggérée comme étant l'une des mesures importantes au maintien de la densité osseuse et à la prévention de l'ostéoporose. Cet article passe en revue les techniques quantitatives permettant d'évaluer la densité osseuse et donne un aperçu des récentes enquêtes transversales et longitudinales reliées aux bienfaits possibles de l'activité physique sur le squelette vieillissant.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andresen, J., & Nielsen, H.E. (1986). Assessment of bone mineral content and bone mass by non-invasive radiologic methods. Acta Radiologica, 27(6), 609617.CrossRefGoogle ScholarPubMed
Bailey, D.A., & McCulloch, R.G. (1992). Osteoporosis from a Different Perspective: Are There Childhood Antecedents For an Adult Health Problem? Canadian Journal of Pediatrics, October, 130134.Google Scholar
Cann, C.E. (1988). Low-dose CT scanning for quantitative mineral density: a review. Radiology, 140, 813815.CrossRefGoogle Scholar
Consensus Development Conference. (1991). Prophylaxis and treatment of osteoporosis. American Journal of Medicine, 96, 107110.Google Scholar
Cummings, S.R. (1987). Bone mineral densitometry. Annals of Internal Medicine, 107, 932936.Google Scholar
Dalksy, G.P. (1987). Exercise: its effect on bone mineral content. Clinical Obstetrics and Gynecology, 30, 820832.Google Scholar
Elsasser, U., & Reeve, J. (1980). Bone density measurement with computed tomography. British Medical Bulletin, 36(3), 293296.CrossRefGoogle ScholarPubMed
Eriksson, S., Isberg, B., & Lingren, B. (1988). Vertebral bone mineral measurement using dual photon absorptiometry and computed tomography. Acta Radiologica, 29, 8994.CrossRefGoogle ScholarPubMed
Fogelman, I., & Ryan, P. (1992). Measurement of Bone Mass. Bone, 13, S23–S28.CrossRefGoogle ScholarPubMed
Genant, H.K., Cann, C.E., Ettinger, B., & Gordan, G.S. (1982). Quantitative computed tomography of vertebral spongiosa: a sensitive method of detecting early bone loss after oophorectomy. Annals of Internal Medicine, 97, 699705.CrossRefGoogle ScholarPubMed
Gupta, S., Luna, E., Belsky, J., Gelfman, N., Miller, E., & Davies, T. (1984). Photon absorptiometry for non-invasive measurement of bone mineral content. Clinical NuclearMedicine, 9, 435439.Google ScholarPubMed
Gutin, B., & Kasper, M.J. (1992). Can vigorous exercise Play a Role In Osteoporosis Prevention? A review. Osteoporosis International, 2, 5569.CrossRefGoogle ScholarPubMed
Hall, F.M., Davis, N.A., & Baran, D.T. (1987). Bone mineral screening for osteoporosis. New England Journal of Medicine, 316, 212214.CrossRefGoogle ScholarPubMed
Hangartner, T.M. (1986). Review: the radiologic measurement of bone. Journal of the Canadian Association of Radiologists, 37, 143152.Google Scholar
Horsman, A., & Currey, J.D. (1983). Estimation of mechanical properties of the distal radius from bone mineral content and cortical width. Clinical Orthopedics, 176, 298304.CrossRefGoogle Scholar
Hounsfield, G.M. (1973). Computerized transverse axial scanning (tomography): Part I. Description of system. British Journal of Radiology, 46, 10161022.CrossRefGoogle Scholar
Jacobsen, P., Beaver, W., Grubb, S., Taft, T., & Talmage, R. (1984). Bone density in women: college athletes and older athletic women. Journal of Orthopedic Research, 2, 328332.CrossRefGoogle Scholar
Johnston, C.C., Slemenda, C.W., & Metta, L.J. III (1991). Clinical use of bone densitometry. New England Journal of Medicine, 324, 11051109.Google ScholarPubMed
Kaplan, F.S. (1987). Osteoporosis — pathophysiology and prevention. CIBA-GEIGY Clinical Symposia, No. 4 (Canada).Google ScholarPubMed
Kelly, T.L., Slovik, D.M., Schoenfield, D.A., & Neer, R.M. (1988). Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. Journal of Clinical Endocrinology and Metabolism, 67, 839844.CrossRefGoogle ScholarPubMed
Kimmel, P.L. (1984). Health and public policy committee. American College of Physicians. Radiologie methods to evaluate bone mineral content. Annals of Internal Medicine, 100, 908911.Google Scholar
Krall, E.A., & Dawson-Hughes, B. (1993). Heritable and life-style determinants of bone mineral density. Journal of Bone and Mineral Research, 8(1), 19.CrossRefGoogle ScholarPubMed
Lachman, E. (1955). Osteoporosis: The potentialities and limitations of its roentgenologic diagnosis. American Journal of Roentgenology, 74, 712715.Google Scholar
Lanyon, L.E. (1989). Strain-related bone modeling and re-modeling. Topics Geriatric Rehabilitation, 4, 1324.CrossRefGoogle Scholar
Leichter, I., Bivas, A., Giveon, A., Margulies, J.Y., & Weinrub, A. (1987). The relative significance of trabecular and cortical bone density as a diagnostic index for osteoporosis. Physical Medicine and Biology, 32, 11671174.CrossRefGoogle ScholarPubMed
Marcus, R., & Carter, D.R. (1988). The role of physical activity in bone mass regulation. In Grana, W.A. (Ed.), Advances in Sports Medicine and Fitness (pp. 6382). Chicago: Year Book Medical Pub. Inc.Google Scholar
Martin, A.D., & Houston, C.S. (1987). Osteoporosis, calcium and physical activity. Canadian Medical Association Journal, 136, 587593.Google ScholarPubMed
Martin, A.D., & McCulloch, R.G. (1987). Bone dynamics: stress, strain and fracture. Journal of Sports Sciences, 5, 155163.CrossRefGoogle ScholarPubMed
Mazess, R., Collick, B., Trempe, J., Barden, H., & Hanson, J. (1989). Performance evaluation of a dual energy X-ray bone densitometer. Calcified Tissue International, 44, 228232.CrossRefGoogle ScholarPubMed
Mazess, R.B. (1987). Bone density in diagnosis of osteoporosis: thresholds and breakpoints. Calcified Tissue International, 411, 117118.CrossRefGoogle Scholar
Mazess, R.B., & Whedon, G.D. (1983). Immobilization and bone. Calcified Tissue International, 35, 265267.CrossRefGoogle ScholarPubMed
McKelvie, M.L., Fordham, J., Clifford, C., & Palmer, S.B. (1989). In vitro comparison of quantitative computed tomography and broadband ultrasonic attenuation of trabecular bone. Bone 10, 101104.CrossRefGoogle ScholarPubMed
Narod, S., & Spasoff, R.A. (1986). Economic and Social burden of osteoporosis. In Uhtoff, H.K. & Stahl, E. (Eds.), Current Concepts in Bone Fragility (pp. 391401). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Nielsen, H.E., Mosekilde, L., Mosekilde, C., Melsen, B., Christensen, P., Olsen, K.J., & Melsen, F. (1980). Relations of bone mineral content, ash weight and bone mass. Implications for correction of bone mineral content for bone size. Clinical Orthopaedics and Related Research, 153, 241247.CrossRefGoogle Scholar
Nilas, L., & Christiansen, C. (1987). Bone Mass and its relationship to age and the menopause. Journal of Clinical Endocrinology and Metabolism, 65, 696702.CrossRefGoogle ScholarPubMed
Nilsson, B.E., & Westlin, N.E. (1971). Bone density in athletes. Clinical Orthopaedics and Related Research, 77, 179182.Google ScholarPubMed
Norris, R.J. (1992). Medical Cost of Osteoporosis. Bone, 13, S11–S16.CrossRefGoogle ScholarPubMed
Ott, S.M., Kilcoyne, R.F., & Chesnut, C.H. (1988). Comparisons among methods of measuring bone mass and relationship to severity of vertebral fractures in osteoporosis. Journal of Clinical Endocrinology and metabolism, 66(3), 501507.CrossRefGoogle ScholarPubMed
Reinbold, W.D., Genant, H.K., Reiser, U.J., Harris, S.T., & Ettinger, B. (1986). Bone mineral content in early post-menopausal and postmenopausal osteoporotic women: Comparison of measurement methods. Radiology, 160, 469478.CrossRefGoogle Scholar
Riggs, B.L., & Melton, L.J. (1986). Involutional osteoporosis. New England Journal of Medicine, 314, 16761686.CrossRefGoogle ScholarPubMed
Riggs, B.L., Seeman, E., Hodgson, S.F., Taves, D.R., & O'Fallon, W.M. (1982). Effect of the fluoride/calcium regimen on vertebral fracture occurrence in postmenopausal osteoporosis. New England Journal of Medicine, 306, 446450.CrossRefGoogle ScholarPubMed
Rubin, C.D. (1991). Southwestern internal medicine conference: age-related osteoporosis. American Journal of Medical Sciences, 301, 281298.CrossRefGoogle Scholar
Rundgren, A., Aniansson, A., Ljungberg, P., & Wetterquist, H. (1984). Effects of a training program for elderly people on bone mineral content of the heel bone. Archives of Gerontology and Geriatrics, 3, 243248.CrossRefGoogle Scholar
Saville, P.D., & Whyte, M.P. (1969). Muscle and bone hypertrophy: a positive effect of running exercise in the rat. Clinical Orthopaedics and Related Research, 65, 8188.Google ScholarPubMed
Schneider, R. (1984). Radiological methods of evaluating generalized osteopenia. Orthopedic Clinics of North America, 14(4), 631651.CrossRefGoogle Scholar
Simkin, A., Ayalon, J., & Leichter, I. (1987). Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcified Tissue International, 40, 5963.CrossRefGoogle ScholarPubMed
Singh, M., Nagrath, A.R., & Maini, P.S. (1970). Changes in the trabecular pattern of the upper end of the femur as an index of osteoporosis. Journal of Bone and Joint Surgery, 52-A, 457467.CrossRefGoogle ScholarPubMed
Smith, E., Gilligan, C., McAdam, M., Ensign, C., & Smith, O. (1989). Deterring bone loss by exercise intervention in premenopausal and post-menopausal women. Calcified Tissue International, 44, 312321.CrossRefGoogle Scholar
Smith, E.L., & Raab, D.M. (1986). Osteoporosis and physical activity. Acta Medica Scandinavia, Supple. 711, 149156.CrossRefGoogle ScholarPubMed
Snow-Harter, C., & Marcus, R. (1991). Exercise, bone mineral density and osteoporosis. Exercise and Sport Sciences Review, 19, 351388.CrossRefGoogle ScholarPubMed
Stillman, R.J. (1987). Physical activity and skeletal health: a brief survey. Medicine and Sports Science, 24, 112.CrossRefGoogle Scholar
Vico, L., Prallet, D., Chappard, D., Pallot-Prades, B., Pupier, R., & Alexandre, C. (1992). Contributions of chronological age, age of menarche and nenopause and of anthropometric parameters to axial and peripheral bone densities. Osteoporosis International, 2, 153158.CrossRefGoogle ScholarPubMed
Wahner, H.W., Dunn, W.L., & Riggs, B.L. (1984). Assessment of bone mineral. Part 1 and 2. Journal of Nuclear Medicine, 25, 11341141 and 1241–1253.Google ScholarPubMed
Wasnich, R.D., Ross, P.D., & Davies, J.W. (1991). Osteoporosis: Current practice and future perspectives. Trends in Endocrinology and Metabolism, 2, 5962.CrossRefGoogle ScholarPubMed