Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-28T18:12:56.070Z Has data issue: false hasContentIssue false

Drug and Natural Health Product Data Collection and Curation in the Canadian Longitudinal Study on Aging

Published online by Cambridge University Press:  25 January 2024

Benoit Cossette*
Affiliation:
Department of Community Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
Lauren Griffith
Affiliation:
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
Patrick D. Emond
Affiliation:
Canadian Longitudinal Study on Aging, Hamilton, ON, Canada
Dee Mangin
Affiliation:
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
Lorraine Moss
Affiliation:
Canadian Longitudinal Study on Aging, Hamilton, ON, Canada
Jennifer Boyko
Affiliation:
Canadian Longitudinal Study on Aging, Hamilton, ON, Canada
Kathryn Nicholson
Affiliation:
Department of Epidemiology & Biostatistics, Western University, London, ON, Canada
Jinhui Ma
Affiliation:
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
Parminder Raina
Affiliation:
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
Christina Wolfson
Affiliation:
Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
Susan Kirkland
Affiliation:
Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
Lisa Dolovich
Affiliation:
Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
*
Corresponding author: La correspondance et les demandes de tirésàpart doivent être adressées à : / Correspondence and requests for offprints should be sent to: Benoit Cossette, Research Center on Aging, CIUSSS de l’Estrie-CHUS, 1036, Belvedere South, Sherbrooke, QC J1H 4C4 (benoit.cossette@usherbrooke.ca).

Abstract

This study aimed to develop an efficient data collection and curation process for all drugs and natural health products (NHPs) used by participants to the Canadian Longitudinal Study on Aging (CLSA). The three-step sequential process consisted of (a) mapping drug inputs collected through the CLSA to the Health Canada Drug Product Database (DPD), (b) algorithm recoding of unmapped drug and NHP inputs, and (c) manual recoding of unmapped drug and NHP inputs. Among the 30,097 CLSA comprehensive cohort participants, 26,000 (86.4%) were using a drug or an NHP with a mean of 5.3 (SD 3.8) inputs per participant user for a total of 137,366 inputs. Of those inputs, 70,177 (51.1%) were mapped to the Health Canada DPD, 20,729 (15.1%) were recoded by algorithms, and 44,108 (32.1%) were manually recoded. The Direct algorithm correctly classified 99.4 per cent of drug inputs and 99.5 per cent of NHP inputs. We developed an efficient three-step process for drug and NHP data collection and curation for use in a longitudinal cohort.

Résumé

Résumé

Cette étude visait à développer un processus efficace de collecte et de recodage des données de tous les médicaments et produits de santé naturels (PSN) utilisés par les participants de l’Étude longitudinale canadienne sur le vieillissement (ELCV). Le processus séquentiel en trois étapes consistait à : 1) jumeler les médicaments colligés dans le cadre de l’étude avec les données de la Base de données sur les produits pharmaceutiques (BDPP) de Santé Canada, 2) recoder par algorithmes les médicaments et PSN non jumelés, et 3) recoder manuellement les médicaments et PSN non jumelés. Parmi les 30 097 participants de la cohorte globale de l’ELCV, 26 000 (86,4 %) utilisaient un médicament ou un PSN avec une moyenne de 5,3 (écart-type 3,8) médicaments ou PSN par participant-utilisateur pour un total de 137 366 médicaments ou PSN. Parmi ces médicaments ou PSN, 70 177 (51,1 %) ont été jumelés avec la BDPP de Santé Canada, 20 729 (15,1 %) ont été recodés par des algorithmes et 44 108 (32,1 %) ont été recodés manuellement. L’algorithme Direct a correctement classé 99,4 % des médicaments et 99,5 % des PSN. Nous avons développé un processus efficace en trois étapes pour la collecte et le recodage de médicaments et de PSN dans une cohorte longitudinale.

Type
Article
Copyright
© Canadian Association on Gerontology 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The original version of this article was missing details in the Acknowledgements section. A notice detailing this has been published and the information added to the online PDF and HTML versions.

References

Banda, J. M., Evans, L., Vanguri, R. S., Tatonetti, N. P., Ryan, P. B., & Shah, N. H. (2016). A curated and standardized adverse drug event resource to accelerate drug safety research. Scientific Data, 3, 160026. https://doi.org/10.1038/sdata.2016.26Google Scholar
Cadarette, S. M., & Wong, L. (2015). An Introduction to Health Care Administrative Data. The Canadian Journal of Hospital Pharmacy, 68(3), 232237. https://doi.org/10.4212/cjhp.v68i3.1457Google Scholar
Gagnier, J. J., Boon, H., Rochon, P., Moher, D., Barnes, J., Bombardier, C., & CONSORT Group. (2006). Recommendations for reporting randomized controlled trials of herbal interventions: Explanation and elaboration. Journal of Clinical Epidemiology, 59(11), 11341149. https://doi.org/10.1016/j.jclinepi.2005.12.020CrossRefGoogle ScholarPubMed
Galvin, R., Moriarty, F., Cousins, G., Cahir, C., Motterlini, N., Bradley, M., Hughes, C. M., Bennett, K., Smith, S. M., Fahey, T., & Kenny, R.-A. (2014). Prevalence of potentially inappropriate prescribing and prescribing omissions in older Irish adults: Findings from The Irish LongituDinal Study on Ageing study (TILDA). European Journal of Clinical Pharmacology, 70(5), 599606. https://doi.org/10.1007/s00228-014-1651-8Google Scholar
Gnjidic, D., Pearson, S.-A., Hilmer, S. N., Basilakis, J., Schaffer, A. L., Blyth, F. M., Banks, E., & High Risk Prescribing Investigators. (2015). Manual versus automated coding of free-text self-reported medication data in the 45 and Up Study: A validation study. Public Health Research & Practice, 25(2), e2521518. https://doi.org/10.17061/phrp2521518Google Scholar
Hernandez, P., Podchiyska, T., Weber, S., Ferris, T., & Lowe, H. (2009). Automated mapping of pharmacy orders from two electronic health record systems to RxNorm within the STRIDE clinical data warehouse. AMIA … Annual Symposium Proceedings. AMIA Symposium, 2009, 244248.Google Scholar
Lockery, J. E., Rigby, J., Collyer, T. A., Stewart, A. C., Woods, R. L., McNeil, J. J., Reid, C. M., Ernst, M. E., & Group, on behalf of the ASPREE Investigator Group (2019). Optimising medication data collection in a large-scale clinical trial. PLOS ONE, 14(12), e0226868. https://doi.org/10.1371/journal.pone.0226868Google Scholar
Metge, C., Grymonpre, R., Dahl, M., & Yogendran, M. (2005). Pharmaceutical use among older adults: Using administrative data to examine medication-related issues. Canadian Journal on Aging = La Revue Canadienne Du Vieillissement, 24(Suppl 1), 8195. https://doi.org/10.1353/cja.2005.0052Google Scholar
Moriarty, F., Bennett, K., Fahey, T., Kenny, R. A., & Cahir, C. (2015a). Longitudinal prevalence of potentially inappropriate medicines and potential prescribing omissions in a cohort of community-dwelling older people. European Journal of Clinical Pharmacology, 71(4), 473482. https://doi.org/10.1007/s00228-015-1815-1Google Scholar
Moriarty, F., Hardy, C., Bennett, K., Smith, S. M., & Fahey, T. (2015b). Trends and interaction of polypharmacy and potentially inappropriate prescribing in primary care over 15 years in Ireland: A repeated cross-sectional study. BMJ Open, 5(9), e008656. https://doi.org/10.1136/bmjopen-2015-008656Google Scholar
Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 309(13), 13511352. https://doi.org/10.1001/jama.2013.393Google Scholar
Nikiema, J. N., Liang, M. Q., Després, P., & Motulsky, A. (2021). OCRx: Canadian Drug Ontology. Studies in Health Technology and Informatics, 281, 367371. https://doi.org/10.3233/SHTI210182Google Scholar
Raina, P., Wolfson, C., Kirkland, S., Griffith, L. E., Balion, C., Cossette, B., Dionne, I., Hofer, S., Hogan, D., van den Heuvel, E. R., Liu-Ambrose, T., Menec, V., Mugford, G., Patterson, C., Payette, H., Richards, B., Shannon, H., Sheets, D., Taler, V., … Young, L. (2019). Cohort Profile: The Canadian Longitudinal Study on Aging (CLSA). International Journal of Epidemiology, 48(6), 17521753j. https://doi.org/10.1093/ije/dyz173Google Scholar
Raina, P. S., Wolfson, C., Kirkland, S. A., Griffith, L. E., Oremus, M., Patterson, C., Tuokko, H., Penning, M., Balion, C. M., Hogan, D., Wister, A., Payette, H., Shannon, H., & Brazil, K. (2009). The Canadian Longitudinal Study on Aging (CLSA). Canadian Journal on Aging = La Revue Canadienne Du Vieillissement, 28(3), 221229. https://doi.org/10.1017/S0714980809990055Google Scholar
Richesson, R. L. (2014). An informatics framework for the standardized collection and analysis of medication data in networked research. Journal of Biomedical Informatics, 52, 410. https://doi.org/10.1016/j.jbi.2014.01.002Google Scholar
Richesson, R. L., Smith, S. B., Malloy, J., & Krischer, J. P. (2010). Achieving standardized medication data in clinical research studies: Two approaches and applications for implementing RxNorm. Journal of Medical Systems, 34(4), 651657. https://doi.org/10.1007/s10916-009-9278-5Google Scholar
RxNorm. (n.d.). RxNorm. National library of medicine. www.nlm.nih.gov/research/umls/rxnorm/index.html.Google Scholar
Schneeweiss, S., & Avorn, J. (2005). A review of uses of health care utilization databases for epidemiologic research on therapeutics. Journal of Clinical Epidemiology, 58(4), 323337. https://doi.org/10.1016/j.jclinepi.2004.10.012CrossRefGoogle ScholarPubMed
Veronin, M. A., Schumaker, R. P., Dixit, R. R., Dhake, P., & Ogwo, M. (2020). A systematic approach to ‘cleaning’ of drug name records data in the FAERS database: A case report. International Journal of Big Data Management, 1(2), 105118. https://doi.org/10.1504/IJBDM.2020.112404Google Scholar
Waters, R., Malecki, S., Lail, S., Mak, D., Saha, S., Jung, H. Y., Imrit, M. A., Razak, F., & Verma, A. A. (2023). Automated identification of unstandardized medication data: A scalable and flexible data standardization pipeline using RxNorm on GEMINI multicenter hospital data. JAMIA Open, 6(3), ooad062. https://doi.org/10.1093/jamiaopen/ooad062Google Scholar
Zhan, C., & Miller, M. R. (2003). Administrative data-based patient safety research: A critical review. Quality & Safety in Health Care, 12(Suppl 2), ii58ii63. https://doi.org/10.1136/qhc.12.suppl_2.ii58Google Scholar
Zhou, L., Plasek, J. M., Mahoney, L. M., Chang, F. Y., DiMaggio, D., & Rocha, R. A. (2012). Mapping Partners Master Drug Dictionary to RxNorm using an NLP-based approach. Journal of Biomedical Informatics, 45(4), 626633. https://doi.org/10.1016/j.jbi.2011.11.006Google Scholar
Supplementary material: File

Cossette et al. supplementary material

Cossette et al. supplementary material
Download Cossette et al. supplementary material(File)
File 50.8 KB