No CrossRef data available.
Published online by Cambridge University Press: 06 January 2025
In this article, by the use of nth derivative characterization, we obtain several some sufficient conditions for all solutions of the complex linear differential equation to lie in weighted Dirichlet spaces and derivative Hardy spaces, respectively, where  $$ \begin{align*}f^{(n)}+A_{n-1}(z)f^{(n-1)}+\ldots+A_1(z)f'+A_0(z)f=A_n(z) \end{align*} $$
$$ \begin{align*}f^{(n)}+A_{n-1}(z)f^{(n-1)}+\ldots+A_1(z)f'+A_0(z)f=A_n(z) \end{align*} $$ $A_i(z) (i=0,1,\ldots ,n)$ are analytic functions defined in the unit disc. This work continues the lines of the investigations by Heittokangas, et al. for growth estimates about the solutions of the above equation.
$A_i(z) (i=0,1,\ldots ,n)$ are analytic functions defined in the unit disc. This work continues the lines of the investigations by Heittokangas, et al. for growth estimates about the solutions of the above equation.
Q.L. is supported by STU Scientific Research Initiation Grant (No. NTF24015T)
 ${C}^n$
. Rev. Mat. Iberoamericana 4(1988), no. 1, 123–153.CrossRefGoogle Scholar
${C}^n$
. Rev. Mat. Iberoamericana 4(1988), no. 1, 123–153.CrossRefGoogle Scholar ${S}^2(D)$
. Acta Sci. Math. (Szeged) 81(2015), no. 3–4, 575–587.CrossRefGoogle Scholar
${S}^2(D)$
. Acta Sci. Math. (Szeged) 81(2015), no. 3–4, 575–587.CrossRefGoogle Scholar ${H}^p$
spaces. Vol. 38, Pure and Applied Mathematics, Academic Press, New York, 1970.Google Scholar
${H}^p$
spaces. Vol. 38, Pure and Applied Mathematics, Academic Press, New York, 1970.Google Scholar ${S}^2(D)$
. Complex Var. Elliptic Equ. 63(2018), no. 5, 599–624.CrossRefGoogle Scholar
${S}^2(D)$
. Complex Var. Elliptic Equ. 63(2018), no. 5, 599–624.CrossRefGoogle Scholar $k$
-composition and
$k$
-composition and 
 $k$
-Hankel composition operators on the derivative Hardy space. Banach J. Math. Anal. 14(2020), no. 4, 1602–1629.CrossRefGoogle Scholar
$k$
-Hankel composition operators on the derivative Hardy space. Banach J. Math. Anal. 14(2020), no. 4, 1602–1629.CrossRefGoogle Scholar ${S}^2(D)$
. Ph.D. thesis, University of Virginia, 2010, p. 143.Google Scholar
${S}^2(D)$
. Ph.D. thesis, University of Virginia, 2010, p. 143.Google Scholar ${S}^2(D)$
. J. Math. Anal. Appl. 394(2012), no. 2, 724–737.CrossRefGoogle Scholar
${S}^2(D)$
. J. Math. Anal. Appl. 394(2012), no. 2, 724–737.CrossRefGoogle Scholar ${H}_{\omega}^{\infty }$
. Ann. Acad. Sci. Fenn. Math. 41(2016), no. 1, 399–416.CrossRefGoogle Scholar
${H}_{\omega}^{\infty }$
. Ann. Acad. Sci. Fenn. Math. 41(2016), no. 1, 399–416.CrossRefGoogle Scholar ${Q}_K$
 spaces. J. Math. Anal. Appl. 375(2011), no. 2, 478–489.CrossRefGoogle Scholar
${Q}_K$
 spaces. J. Math. Anal. Appl. 375(2011), no. 2, 478–489.CrossRefGoogle Scholar ${S}^p(D)$
 spaces. J. Math. Anal. Appl. 461(2018), no. 2, 1100–1114.CrossRefGoogle Scholar
${S}^p(D)$
 spaces. J. Math. Anal. Appl. 461(2018), no. 2, 1100–1114.CrossRefGoogle Scholar ${S}^p$
. Houston J. Math. 13(1987), no. 2, 245–254.Google Scholar
${S}^p$
. Houston J. Math. 13(1987), no. 2, 245–254.Google Scholar ${H}^p$
-derivative. Houston J. Math. 4(1978), no. 3, 423–438.Google Scholar
${H}^p$
-derivative. Houston J. Math. 4(1978), no. 3, 423–438.Google Scholar ${H}_K^2$
 spaces. Complex Var. Elliptic Equ. 67(2022), no. 11, 2577–2588.CrossRefGoogle Scholar
${H}_K^2$
 spaces. Complex Var. Elliptic Equ. 67(2022), no. 11, 2577–2588.CrossRefGoogle Scholar $F(p,q,s)$
 space. Complex Var. Elliptic Equ. 63(2018), no. 1, 116–135.CrossRefGoogle Scholar
$F(p,q,s)$
 space. Complex Var. Elliptic Equ. 63(2018), no. 1, 116–135.CrossRefGoogle Scholar