Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
A Hausdorff-Young theorem is given for Lp-valued analytic functions on the open unit disc and estimates on such functions and their derivatives are deduced.
1.Bromwich, T. J., Theory of Infinite Series,Macmillan, 2nd ed., London1926.Google Scholar
2
2.Dunford, N. and Schwartz, J. T., Linear Operators,Interscience, New York, pt. I, 1958.Google Scholar
3
3.Duren, P. L., Theory of Hp Spaces,Academic Press, New York, 1970.Google Scholar
4
4.Hardy, G. H., Littlewood, J. E. and Polya, G., Inequalities,Cambridge University Press, London, 1934.Google Scholar
5
5.Harris, L., Bounds on the derivatives of holomorphic functions of vectors,Proc. Colloq. Analysis, Rio de Janeiro, 1972, 145-163, Nachbin, L., Ed., Act. Sci. et Ind. Paris: Hermann, 1975.Google Scholar
6
6.Hayden, T. and Wells, J., On the extension of Lipschitz-Hôlder maps of order a, J. Math. Anal. Appl. 33 (1971), 627-640.Google Scholar
7
7.Hille, E. and Phillips, R. S., Functional Analysis and Semi-Groups,Amer. Math. Soc. Colloq. Publ. 31, Providence, 1957.Google Scholar
8
8.Kestelman, H., Modern Theories of Integration,Oxford University Press, London1937.Google Scholar
9
9.Renaud, A., Quelques propriétés des applications analytiques d'une boule de dimensioninfinie dans une autre, Bull. Sci. Math. 97 (1973), 129-159.Google Scholar
10
10.Titchmarsh, E. C., The Theory of Functions,Oxford University Press, 2nded., London1939.Google Scholar
11
11.Williams, L. R. and Wells, J. H., Lp inequalities, J. Math. Anal. Appl. 64 (1978), 518-529.Google Scholar