Skip to main content
×
×
Home

Generalizing Hopf’s Boundary Point Lemma

  • Leobardo Rosales (a1)
Abstract

We give a Hopf boundary point lemma for weak solutions of linear divergence form uniformly elliptic equations, with Hölder continuous top-order coefficients and lower-order coefficients in a Morrey space.

Copyright
Footnotes
Hide All

This work was partly conducted while the author was an Associate Member at the Korea Institute for Advanced Study.

Footnotes
References
Hide All
[1] Avelin, B., Kuusi, T., and Mingione, G., Nonlinear Calderón-Zygmund theory in the limiting case . Arch. Rat. Mech. Anal. Online: September 16, 2017. https://doi.org/10.1007/s00205-017-1171-7.
[2] Cianci, P., Cirmi, G. R., D’Asero, S., and Leonardi, S., Morrey estimates for solutions of singular quadratic non linear equations . Ann. Mat. Pura Appl. 196(2017), no. 5, 17391758. https://doi.org/10.1007/s10231-017-0636-5.
[3] Cirmi, G. R., D’Asero, S., and Leonardi, S., Gradient estimate for solutions of a class of nonlinear elliptic equations below the duality exponent . Math. Method Appl. Sci. Online: October 5, 2017. https://doi.org/10.1002/mma.4609.
[4] Cirmi, G. R. and Leonardi, S., Regularity results for the gradient of solutions of linear elliptic equations with L 1, 𝜆 data . Ann. Mat. Pura e Appl. 185(2006), no. 4, 537553. https://doi.org/10.1007/s10231-005-0167-3.
[5] Cirmi, G. R. and Leonardi, S., Higher differentiability for solutions of linear elliptic systems with measure data . Discrete Contin. Dyn. Syst. 26(2010), no. 1, 89104.
[6] Cirmi, G. R. and Leonardi, S., Higher differentiability for the solutions of nonlinear elliptic systems with lower order terms and L 1, 𝜃-data . Ann. Mat. Pura Appl. 193(2014), no. 1, 115131. https://doi.org/10.1007/s10231-012-0269-7.
[7] Cirmi, G. R., Leonardi, S., and Stará, J., Regularity results for the gradient of solutions of a class of linear elliptic systems with L 1, 𝜆 data . Nonlinear Anal. 68(2008), no. 12, 36093624. https://doi.org/10.1016/j.na.2007.04.004.
[8] Gilbarg, D. and Trudinger, N. S., Elliptic partial differential equations of second order. Second ed., Grundlehren der Mathematischen Wissenschaften Springer-Verlag, Berlin, 1983.
[9] Hardt, R. and Simon, L., Boundary regularity and embedded solutions for the oriented Plateau problem . Ann. of Math. 110(1979), no. 3, 439486. https://doi.org/10.2307/1971233.
[10] Hopf, E., A remark on linear elliptic differential equations of second order . Proc. Amer. Math. Soc. 3(1952), no. 5, 791793. https://doi.org/10.1090/S0002-9939-1952-0050126-X.
[11] Kristensen, J. and Mingione, G., Boundary regularity in variational problems . Arch. Ration. Mech. Anal. 198(2010), no. 2, 369455. https://doi.org/10.1007/s00205-010-0294-x.
[12] Leonardi, S., Gradient estimates below duality exponent for a class of linear elliptic systems . Nonlinear Differential Equations Appl. 18(2011), no. 3, 237254. https://doi.org/10.1007/s00030-010-0093-y.
[13] Leonardi, S., Fractional differentiability for solutions of a class of parabolic systems with L 1, 𝜃-data . NonLinear Anal. 95(2014), 530542. https://doi.org/10.1016/j.na.2013.10.003.
[14] Leonardi, S. and Stará, J., Regularity results for the gradient of solutions of linear elliptic systems with VMO-coefficients and L 1, 𝜆 data . Forum Math. 22(2010), no. 5, 913940.
[15] Leonardi, S. and Stará, J., Regularity up to the boundary for the gradient of solutions of linear elliptic systems with VMO coefficients and L 1, 𝜆 . Complex Var. Elliptic Equ. 56(2011), no. 12, 10861098. https://doi.org/10.1080/17476933.2010.534152.
[16] Leonardi, S. and Stará, J., Regularity results for solutions of a class of parabolic systems with measure data . Nonlinear Anal. 75(2012), no. 4, 20692089. https://doi.org/10.1016/j.na.2011.10.008.
[17] Leonardi, S. and Stará, J., Higher differentiability for solutions of a class of parabolic systems with L 1, 𝜃-data . Q. J. Math. 66(2015), no. 2, 659676. https://doi.org/10.1093/qmath/hau031.
[18] Mingione, G., The Calderon-Zygmund theory for elliptic problems with measure data . Ann. Sc. Norm. Super, Pisa Cl. Sci. 6(2007), no. 2, 195261.
[19] Morrey, C. B. Jr, Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, 130, Springer-Verlag, New York, 1966.
[20] Sabina De Lis, J. C., Hopf maximum principle revisited . Electron. J. Differential Equations 115(2015), 19.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed