Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-05T10:13:58.126Z Has data issue: false hasContentIssue false

Metastable Immersion, Span and the Two-type of a Manifold

Published online by Cambridge University Press:  20 November 2018

Henry Glover
Affiliation:
Department of Mathematics, Ohio State UniversityColumbus, Ohio, 43210
William Homer
Affiliation:
Department of Mathematics and Statistics, Memorial University of NewfoundlandSt. John's, Newfoundland, A1B 3X7
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The existence of metastable immersion or span for space forms and homogeneous spaces is shown to depend only on the two-type of the space.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1986

References

1. Atiyah, M. F., Thorn complexes, Proc. London Math. Soc. (3) 11 (1961), pp. 291310.Google Scholar
2. Becker, J. C., Vector fields on quotient manifolds of spheres, Indiana U. Math. J. 22 (1973), pp. 859871.Google Scholar
3. Benlian, R. and Wagoner, J., Type d'homotopie fibre et reduction structurale des fibres vectoriels, C.R. Acad. Sci. Paris ser. A-B 265 (1967), pp. A205A209.Google Scholar
4. Bousfield, A. K., The localization of spaces with respect to homology, Topology 14 (1975), pp. 133150.Google Scholar
5. Bousfield, A. K. and Kan, D., Homotopy limits, completions and localizations, Springer Lecture Notes in Math. 304 (1972).Google Scholar
6. Brown, E. and Peterson, F., The real dimension of a vector bundle at the prime two, London Math. Soc. Lecture Note Series 86 (1983), pp. 128135.Google Scholar
7. Cohen, R., The immersion conjecture for differentiable manifolds (preprint).Google Scholar
8. Davis, D., A strong non-immersion theorem for real projective spaces, Annals of Math. 120 (1989), pp. 517528.Google Scholar
9. Dupont, J. L., On homotopy invariance of the tangent bundle I, II, Math. Scand. 26 (1970), pp. 5—13. and 200-220.Google Scholar
10. Friedlander, E., Maps between localized homogeneous spaces, Topology 16 (1977), pp. 205—216.Google Scholar
11. Glover, H. and Homer, W., Immersing manifolds and 2-equivalence, Springer Lect. Notes in Math. 657 (1978), pp. 194197.Google Scholar
12. Glover, H. and Homer, W., Equivariant immersion of flag manifolds, Indiana U. Math. J. 28 (1979), pp. 953956.Google Scholar
13. Glover, H., Homer, W., and Mislin, G., Immersions in manifolds of positive weights, Springer Lect. Notes in Math. 673 (1978), pp. 8892.Google Scholar
14. Glover, H. and Mislin, G., Immersion in the metastable range and 2-localization, Proc. Amer. Math. Soc. 43 (1974), pp. 443448.Google Scholar
15. Glover, H. and Mislin, G., Vector fields on 2-equivalent manifolds, Serie notas de matematica y simposia, Reunion Sobre Teoria de Homotipia, Universidad de Northwestern, Agosto 1974, Sociedad Mathematica Mexicana 1 (1975), pp. 2945.Google Scholar
16. Haefliger, A. and Poenaru, V., La classification des immersions combinatoires, IHES Publ. Math. 23 (1964), pp. 7491.Google Scholar
17. Hiller, H., Immersing homogeneous spaces in Euclidean space, Proceedings of Workshop on Algebraic Topology, Publ. Mat. Universitat Autonoma de Barcelona 26 (1982), pp. 4345.Google Scholar
18. Hiller, H. and Stong, R., Immersion dimension for real Grassmannians, Math. Ann. 255 (1981), pp. 361367.Google Scholar
19. Hilton, P., Mislin, G., and Roitberg, J., Localization of nilpotent groups and spaces, Math. Studies 15 (1975), North Holland.Google Scholar
20. Hirsch, M. W., Immersion of manifolds, Trans. Amer. Math. Soc. 93 (1959), pp. 242276.Google Scholar
21. James, I. M., On the iterated suspension, Quart. J. Math. Oxford (2) 5 (1954), pp. 110.Google Scholar
22. James, I. M., Euclidean models of projective spaces, Bull. London Math. Soc, 3 (1971), pp. 257—276.Google Scholar
23. Lam, K. Y., A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), pp. 305314.Google Scholar
24. Sjerve, D., Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), pp. 97106.Google Scholar