Skip to main content
×
×
Home

On Motivic Realizations of the Canonical Hermitian Variations of Hodge Structure of Calabi–Yau Type over type $D^{\mathbb{H}}$ Domains

  • Zheng Zhang (a1)
Abstract

Let ${\mathcal{D}}$ be the irreducible Hermitian symmetric domain of type $D_{2n}^{\mathbb{H}}$ . There exists a canonical Hermitian variation of real Hodge structure ${\mathcal{V}}_{\mathbb{R}}$ of Calabi–Yau type over  ${\mathcal{D}}$ . This short note concerns the problem of giving motivic realizations for  ${\mathcal{V}}_{\mathbb{R}}$ . Namely, we specify a descent of ${\mathcal{V}}_{\mathbb{R}}$ from $\mathbb{R}$ to $\mathbb{Q}$ and ask whether the $\mathbb{Q}$ -descent of ${\mathcal{V}}_{\mathbb{R}}$ can be realized as sub-variation of rational Hodge structure of those coming from families of algebraic varieties. When $n=2$ , we give a motivic realization for  ${\mathcal{V}}_{\mathbb{R}}$ . When $n\geqslant 3$ , we show that the unique irreducible factor of Calabi–Yau type in $\text{Sym}^{2}{\mathcal{V}}_{\mathbb{R}}$ can be realized motivically.

Copyright
References
Hide All
[Abd02] Abdulali, S., Hodge structures on abelian varieties of type III . Ann. of Math. (2) 155(2002), no. 3, 915928. https://doi.org/10.2307/3062136.
[Del79] Deligne, P., Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques . In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore, 1977), part 2, Proc. Sympos. Pure Math., 33, American Mathematical Society, Providence, RI, 1979, pp. 247289.
[FH91] Fulton, W. and Harris, J., Representation theory A first course. Graduate Texts in Mathematics, 129, Readings in Mathematics, Springer-Verlag, New York, 1991. https://doi.org/10.1007/978-1-4612-0979-9.
[FL13] Friedman, R. and Laza, R., Semialgebraic horizontal subvarieties of Calabi-Yau type . Duke Math. J. 162(2013), no. 12, 20772148. https://doi.org/10.1215/00127094-2348107.
[FL14] Friedman, R. and Laza, R., On some Hermitian variations of Hodge structure of Calabi-Yau type with real multiplication . Michigan Math. J. 63(2014), 8399. https://doi.org/10.1307/mmj/1395234360.
[GGK12] Green, M., Griffiths, P., and Kerr, M., Mumford-Tate groups and domains. Their geometry and arithmetic. Annals of Mathematics Studies, 183, Princeton University Press, Princeton, NJ, 2012.
[Gro94] Gross, B. H., A remark on tube domains . Math. Res. Lett. 1(1994), 19. https://doi.org/10.4310/RL.1994.v1.n1.a1.
[GW09] Goodman, R. and Wallach, N. R., Symmetry, representations, and invariants. Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009. https://doi.org/10.1007/978-0-387-79852-3.
[Ker14] Kerr, M., Shimura varieties: a Hodge-theoretic perspective . In: Hodge theory, Math. Notes, 49, Princeton University Press, Princeton, NJ, 2014, pp. 531575. https://doi.org/10.1007/BF01142652.
[Mil94] Milne, J. S., Shimura varieties and motives . In: Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, American Mathematical Society, Providence, RI, 1994, pp. 447523.
[Mil13] Milne, J. S., Shimura varieties and moduli . In: Handbook of Moduli. II, Advanced Lectures in Mathematics, 25, Int. Press, Somerville, MA, 2013, pp. 467548.
[Mil15] Milne, J. S., Algebraic groups (algebraic group schemes over fields) Version 2.0, 2015. http://www.jmilne.org/math/CourseNotes/iAG200.pdf.
[Moo99] Moonen, B., Notes on Mumford-Tate groups. 1999. https://www.math.ru.nl/∼bmoonen/Lecturenotes/CEBnotesMT.pdf.
[Roh09] Rohde, J. C., Cyclic coverings, Calabi-Yau manifolds and complex multiplication. Lecture Notes in Mathematics, 1975, Springer-Verlag, Berlin, 2009. https://doi.org/10.1007/978-3-642-00639-5.
[Sat65] Satake, I., Holomorphic imbeddings of symmetric domains into a Siegel space . Amer. J. Math. 87(1965), 425461. https://doi.org/10.2307/2373012.
[SZ10] Sheng, M. and Zuo, K., Polarized variation of Hodge structures of Calabi-Yau type and characteristic subvarieties over bounded symmetric domains . Math. Ann. 348(2010), no. 1, 211236. https://doi.org/10.1007/s00208-009-0378-9.
[vGV03] van Geemen, B. and Verra, A., Quaternionic Pryms and Hodge classes . Topology 42(2003), 3553. https://doi.org/10.1016/S0040-9383(02)00004-6.
[Zha15] Zhang, Z., A realization for a ℚ-Hermitian variation of Hodge structure of Calabi-Yau type with real multiplication . Math. Res. Lett. 22(2015), no. 3, 967982. https://doi.org/10.4310/MRL.2015.v22.n3.a17.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed