No CrossRef data available.
Published online by Cambridge University Press: 04 January 2019
Let ${\mathcal{D}}$ be the irreducible Hermitian symmetric domain of type
$D_{2n}^{\mathbb{H}}$. There exists a canonical Hermitian variation of real Hodge structure
${\mathcal{V}}_{\mathbb{R}}$ of Calabi–Yau type over
${\mathcal{D}}$. This short note concerns the problem of giving motivic realizations for
${\mathcal{V}}_{\mathbb{R}}$. Namely, we specify a descent of
${\mathcal{V}}_{\mathbb{R}}$ from
$\mathbb{R}$ to
$\mathbb{Q}$ and ask whether the
$\mathbb{Q}$-descent of
${\mathcal{V}}_{\mathbb{R}}$ can be realized as sub-variation of rational Hodge structure of those coming from families of algebraic varieties. When
$n=2$, we give a motivic realization for
${\mathcal{V}}_{\mathbb{R}}$. When
$n\geqslant 3$, we show that the unique irreducible factor of Calabi–Yau type in
$\text{Sym}^{2}{\mathcal{V}}_{\mathbb{R}}$ can be realized motivically.