We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the length of short cycles on uniformly random metric maps (also known as ribbon graphs) of large genus using a Teichmüller theory approach. We establish that, as the genus tends to infinity, the length spectrum converges to a Poisson point process with an explicit intensity. This result extends the work of Janson and Louf to the multi-faced case.
We provide a complete classification of Teichmüller curves occurring in hyperelliptic components of the meromorphic strata of differentials. Using a non-existence criterion based on how Teichmüller curves intersect the boundary of the moduli space we derive a contradiction to the algebraicity of any candidate outside of Hurwitz covers of strata with projective dimension one, and Hurwitz covers of zero residue loci in strata with projective dimension two.
We define and study graphs associated to hexagon decompositions of surfaces by curves and arcs. One of the variants is shown to be quasi-isometric to the pants graph, whereas the other variant is quasi-isometric to (a Cayley graph of) the mapping class group.
We classify quasidiagonals of the $SL(2, R)$ action on products of strata or hyperelliptic loci. We use the technique of diamonds developed by Apisa and Wright in order to use induction on this problem.
Following the work of Mazzeo–Swoboda–Weiß–Witt [Duke Math. J. 165 (2016), 2227–2271] and Mochizuki [J. Topol. 9 (2016), 1021–1073], there is a map $\overline{\Xi }$ between the algebraic compactification of the Dolbeault moduli space of ${\rm SL}(2,\mathbb{C})$ Higgs bundles on a smooth projective curve coming from the $\mathbb{C}^\ast$ action and the analytic compactification of Hitchin’s moduli space of solutions to the $\mathsf{SU}(2)$ self-duality equations on a Riemann surface obtained by adding solutions to the decoupled equations, known as ‘limiting configurations’. This map extends the classical Kobayashi–Hitchin correspondence. The main result that this article will show is that $\overline{\Xi }$ fails to be continuous at the boundary over a certain subset of the discriminant locus of the Hitchin fibration.
Let $f:X\to Y$ be a surjective projective map, and let L be a holomorphic line bundle on X equipped with a (singular) semi-positive Hermitian metric h. In this article, by studying the canonical metric on the direct image sheaf of the twisted relative canonical bundles $K_{X/Y}\otimes L\otimes \mathscr {I}(h)$, we obtain that this metric has dual Nakano semi-positivity when h is smooth and there is no deformation by f and that this metric has locally Nakano semi-positivity in the singular sense when h is singular.
We provide a complete description of realizable period representations for meromorphic differentials on Riemann surfaces with prescribed orders of zeros and poles, hyperelliptic structure and spin parity.
We prove an effective estimate with a power saving error term for the number of square-tiled surfaces in a connected component of a stratum of quadratic differentials whose vertical and horizontal foliations belong to prescribed mapping class group orbits and which have at most L squares. This result strengthens asymptotic counting formulas in the work of Delecroix, Goujard, Zograf, Zorich, and the author.
We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the fundamental group $\Gamma$ of a closed hyperbolic surface $\Sigma$ in $\textrm{PSL}(2,{\mathbb{R}})^n$. We identify the boundary with the sphere ${\mathbb{P}}(({\mathcal{ML}})^n)$, where $\mathcal{ML}$ is the space of measured geodesic laminations on $\Sigma$. In the case $n=2$, we give a geometric interpretation of the boundary as the space of homothety classes of ${\mathbb{R}}^2$-mixed structures on $\Sigma$. We associate to such a structure a dual tree-graded space endowed with an ${\mathbb{R}}_+^2$-valued metric, which we show to be universal with respect to actions on products of two $\mathbb{R}$-trees with the given length spectrum.
Suppose that $f:X\to C$ is a general Jacobian elliptic surface over ${\mathbb {C}}$ of irregularity $q$ and positive geometric genus $h$. Assume that $10 h>12(q-1)$, that $h>0$ and let $\overline {\mathcal {E}\ell \ell }$ denote the stack of generalized elliptic curves. (1) The moduli stack $\mathcal {JE}$ of such surfaces is smooth at the point $X$ and its tangent space $T$ there is naturally a direct sum of lines $(v_a)_{a\in Z}$, where $Z\subset C$ is the ramification locus of the classifying morphism $\phi :C\to \overline {\mathcal {E}\ell \ell }$ that corresponds to $X\to C$. (2) For each $a\in Z$ the map $\overline {\nabla }_{v_a}:H^{2,0}(X)\to H^{1,1}_{\rm prim}(X)$ defined by the derivative $per_*$ of the period map $per$ is of rank one. Its image is a line ${\mathbb {C}}[\eta _a]$ and its kernel is $H^0(X,\Omega ^2_X(-E_a))$, where $E_a=f^{-1}(a)$. (3) The classes $[\eta _a]$ form an orthogonal basis of $H^{1,1}_{\rm prim}(X)$ and $[\eta _a]$ is represented by a meromorphic $2$-form $\eta _a$ in $H^0(X,\Omega ^2_X(2E_a))$ of the second kind. (4) We prove a local Schottky theorem; that is, we give a description of $per_*$ in terms of a certain additional structure on the vector bundles that are involved. Assume further that $8h>10(q-1)$ and that $h\ge q+3$. (5) Given the period point $per(X)$ of $X$ that classifies the Hodge structure on the primitive cohomology $H^2_{\rm prim}(X)$ and the image of $T$ under $per_*$ we recover $Z$ as a subset of ${\mathbb {P}}^{h-1}$ and then, by quadratic interpolation, the curve $C$. (6) We prove a generic Torelli theorem for these surfaces. Everything relies on the construction, via certain kinds of Schiffer variations of curves, of certain variations of $X$ for which $per_*$ can be calculated. (In an earlier version of this paper we used variations constructed by Fay. However, Schiffer variations are slightly more powerful.)
We prove that the nonvarying strata of abelian and quadratic differentials in low genus have trivial tautological rings and are affine varieties. We also prove that strata of k-differentials of infinite area are affine varieties for all k. Vanishing of homology in degree higher than the complex dimension follows as a consequence for these affine strata. Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic differentials of finite area is extremal in the sense that merging two zeros in each stratum leads to an extremal effective divisor in the boundary. A common feature throughout these results is a relation of divisor classes in strata of differentials as well as its incarnation in Teichmüller dynamics.
We prove general Dwork-type congruences for constant terms attached to tuples of Laurent polynomials. We apply this result to establishing arithmetic and p-adic analytic properties of functions originating from polynomial solutions modulo $p^s$ of hypergeometric and Knizhnik–Zamolodchikov (KZ) equations, solutions which come as coefficients of master polynomials and whose coefficients are integers. As an application, we show that the simplest example of a p-adic KZ connection has an invariant line subbundle while its complex analog has no nontrivial subbundles due to the irreducibility of its monodromy representation.
We consider the Weil–Petersson gradient vector field of renormalized volume on the deformation space of convex cocompact hyperbolic structures on (relatively) acylindrical manifolds. In this paper we prove the conjecture that the flow has a global attracting fixed point at the unique structure $M_{\rm geod}$ with minimum convex core volume.
This paper is about a type of quantitative density of closed geodesics and orthogeodesics on complete finite-area hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic and the shortest doubly truncated orthogeodesic that are $\varepsilon$-dense on a given compact set on the surface.
We consider a holomorphic family $f:\mathscr {X} \to S$ of compact complex manifolds and a line bundle $\mathscr {L}\to \mathscr {X}$. Given that $\mathscr {L}^{-1}$ carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor $\mathscr {D}$, the direct image $f_*(K_{\mathscr {X}/S}\otimes \mathscr {D} \otimes \mathscr {L})$ carries a smooth hermitian metric. If $\mathscr {L}$ is relatively positive, we give an explicit formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover, we show that it improves the general positivity result of Berndtsson-Păun in a special situation of a big line bundle.
The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a seminal article from 1994, a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of the Grothendieck–Riemann–Roch theorem, we offer a mathematical description of the BCOV conjecture at genus one. As an application of the arithmetic Riemann–Roch theorem of Gillet–Soulé and our previous results on the BCOV invariant, we establish this conjecture for Calabi–Yau hypersurfaces in projective spaces. Our contribution takes place on the B-side, and together with the work of Zinger on the A-side, it provides the first complete examples of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang–Lu–Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a Chowla–Selberg type theorem expressing it in terms of special
$\Gamma $
-values for certain Calabi–Yau manifolds with complex multiplication.
We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli space.
Following Bridgeman, we demonstrate several families of infinite dilogarithm identities associated with Fibonacci numbers, Lucas numbers, convergents of continued fractions of even periods, and terms arising from various recurrence relations.
Let $\mathbb {V}$ be a motivic variation of Hodge structure on a $K$-variety $S$, let $\mathcal {H}$ be the associated $K$-algebraic Hodge bundle, and let $\sigma \in \mathrm {Aut}(\mathbb {C}/K)$ be an automorphism. The absolute Hodge conjecture predicts that given a Hodge vector $v \in \mathcal {H}_{\mathbb {C}, s}$ above $s \in S(\mathbb {C})$ which lies inside $\mathbb {V}_{s}$, the conjugate vector $v_{\sigma } \in \mathcal {H}_{\mathbb {C}, s_{\sigma }}$ is Hodge and lies inside $\mathbb {V}_{s_{\sigma }}$. We study this problem in the situation where we have an algebraic subvariety $Z \subset S_{\mathbb {C}}$ containing $s$ whose algebraic monodromy group $\textbf {H}_{Z}$ fixes $v$. Using relationships between $\textbf {H}_{Z}$ and $\textbf {H}_{Z_{\sigma }}$ coming from the theories of complex and $\ell$-adic local systems, we establish a criterion that implies the absolute Hodge conjecture for $v$ subject to a group-theoretic condition on $\textbf {H}_{Z}$. We then use our criterion to establish new cases of the absolute Hodge conjecture.
Let
$f\colon X\to B$
be a semistable fibration where X is a smooth variety of dimension
$n\geq 2$
and B is a smooth curve. We give the structure theorem for the local system of the relative
$1$
-forms and of the relative top forms. This gives a neat interpretation of the second Fujita decomposition of
$f_*\omega _{X/B}$
. We apply our interpretation to show the existence, up to base change, of higher irrational pencils and on the finiteness of the associated monodromy representations under natural Castelnuovo-type hypothesis on local subsystems. Finally, we give a criterion to have that X is not of Albanese general type if
$B=\mathbb {P}^1$
.