Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-04-30T16:09:10.544Z Has data issue: false hasContentIssue false

On nonmonogenic number fields defined by $x^6+ax+b$

Published online by Cambridge University Press:  15 September 2021

Anuj Jakhar*
Affiliation:
Department of Mathematics, Indian Institute of Technology (IIT) Bhilai, Raipur, Chhattisgarh492015, Indiasurenderk@iitbhilai.ac.in
Surender Kumar
Affiliation:
Department of Mathematics, Indian Institute of Technology (IIT) Bhilai, Raipur, Chhattisgarh492015, Indiasurenderk@iitbhilai.ac.in

Abstract

Let q be a prime number and $K = \mathbb Q(\theta )$ be an algebraic number field with $\theta $ a root of an irreducible trinomial $x^{6}+ax+b$ having integer coefficients. In this paper, we provide some explicit conditions on $a, b$ for which K is not monogenic. As an application, in a special case when $a =0$ , K is not monogenic if $b\equiv 7 \mod 8$ or $b\equiv 8 \mod 9$ . As an example, we also give a nonmonogenic class of number fields defined by irreducible sextic trinomials.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, S., Nakahara, T., and Hameed, A., On certain pure sextic fields related to a problem of Hasse . Int. J. Algebra Comput. 26(2016), no. 3, 577583.10.1142/S0218196716500259CrossRefGoogle Scholar
Bilu, Y., Gaál, I., and Györy, K., Index form equations in sextic fields: a hard computation . Acta Arith. 115(2004), no. 1, 8596.10.4064/aa115-1-7CrossRefGoogle Scholar
Dedekind, R., Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Congruenzen . Göttingen Abh. 23(1878), 123.Google Scholar
Fadil, L. E., On integral bases and monogenity of pure sextic number fields with non-squarefree coefficients . J. Number Theory 228(2021), 375389.CrossRefGoogle Scholar
Gaál, I., Power integral bases in algebraic number fields . Ann. Univ. Sci. Budapest. Sect. Comput. 18(1999), 6187.Google Scholar
Gaál, I., Diophantine equations and power integral bases, theory and algorithm. 2nd ed., Birkhäuser, Boston, 2019.CrossRefGoogle Scholar
Gaál, I., Olajos, P., and Pohst, M., Power integral bases in orders of composite fields . Exp. Math. 11(2002), no. 1, 8790.10.1080/10586458.2002.10504471CrossRefGoogle Scholar
Gaál, I. and Remete, L., Power integral bases and monogenity of pure fields . J. Number Theory 173(2017), 129146.CrossRefGoogle Scholar
Khanduja, S. K. and Kumar, S., On prolongations of valuations via Newton polygons and liftings of polynomials . J. Pure Appl. Algebra 216(2012), 26482656.CrossRefGoogle Scholar
Pethö, A. and Pohst, M., On the indices of multiquadratic number fields . Acta Arith. 153(2012), no. 4, 393414.10.4064/aa153-4-4CrossRefGoogle Scholar
Yakkou, H. B. and Fadil, L. E., On monogenty of certain pure number fields defined by ${x}^{p^r}-m$ . Int. J. Number Theory (2021). https://doi.org/10.1142/S1793042121500858 Google Scholar