No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let   ${{M}_{n}}(F)$  be the algebra of
 ${{M}_{n}}(F)$  be the algebra of   $n\times n$  matrices over a field
 $n\times n$  matrices over a field   $F$  of characteristic
 $F$  of characteristic   $p>2$  and let
 $p>2$  and let   $*$  be an involution on
 $*$  be an involution on   ${{M}_{n}}(F)$ . If
 ${{M}_{n}}(F)$ . If   ${{s}_{1}},...,{{s}_{r}}$  are symmetric variables we determine the smallest
 ${{s}_{1}},...,{{s}_{r}}$  are symmetric variables we determine the smallest   $r$  such that the polynomial
 $r$  such that the polynomial
  $${{P}_{r}}({{S}_{1}},...,{{S}_{r}})\,=\,\sum\limits_{\sigma \in {{S}_{r}}}{{{S}_{\sigma (1)}}...{{S}_{\sigma (r)}}}$$
 $${{P}_{r}}({{S}_{1}},...,{{S}_{r}})\,=\,\sum\limits_{\sigma \in {{S}_{r}}}{{{S}_{\sigma (1)}}...{{S}_{\sigma (r)}}}$$
is a   $*$ -polynomial identity of
 $*$ -polynomial identity of   ${{M}_{n}}(F)$  under either the symplectic or the transpose involution. We also prove an analogous result for the polynomial
 ${{M}_{n}}(F)$  under either the symplectic or the transpose involution. We also prove an analogous result for the polynomial
  $${{C}_{r}}\left( {{k}_{1}},...,{{k}_{r,}}{{{{k}'}}_{1}},...,{{{{k}'}}_{r}} \right)=\sum\limits_{\sigma ,\tau \in {{S}_{r}}}{{{k}_{\sigma \left( 1 \right)}}{{{{k}'}}_{\tau \left( 1 \right)}}\cdot \cdot \cdot {{k}_{\sigma \left( r \right)}}{{{{k}'}}_{\tau \left( r \right)}}}$$
 $${{C}_{r}}\left( {{k}_{1}},...,{{k}_{r,}}{{{{k}'}}_{1}},...,{{{{k}'}}_{r}} \right)=\sum\limits_{\sigma ,\tau \in {{S}_{r}}}{{{k}_{\sigma \left( 1 \right)}}{{{{k}'}}_{\tau \left( 1 \right)}}\cdot \cdot \cdot {{k}_{\sigma \left( r \right)}}{{{{k}'}}_{\tau \left( r \right)}}}$$
where   ${{k}_{1}},...,{{k}_{r}},k_{1}^{'},...,k_{r}^{'}$  are skew variables under the transpose involution.
 ${{k}_{1}},...,{{k}_{r}},k_{1}^{'},...,k_{r}^{'}$  are skew variables under the transpose involution.