Skip to main content

On the Limiting Weak-type Behaviors for Maximal Operators Associated with Power Weighted Measure

  • Xianming Hou (a1) and Huoxiong Wu (a1)

Let $\unicode[STIX]{x1D6FD}\geqslant 0$ , let $e_{1}=(1,0,\ldots ,0)$ be a unit vector on $\mathbb{R}^{n}$ , and let $d\unicode[STIX]{x1D707}(x)=|x|^{\unicode[STIX]{x1D6FD}}dx$ be a power weighted measure on $\mathbb{R}^{n}$ . For $0\leqslant \unicode[STIX]{x1D6FC}<n$ , let $M_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6FC}}$ be the centered Hardy-Littlewood maximal function and fractional maximal functions associated with measure $\unicode[STIX]{x1D707}$ . This paper shows that for $q=n/(n-\unicode[STIX]{x1D6FC})$ , $f\in L^{1}(\mathbb{R}^{n},d\unicode[STIX]{x1D707})$ ,

$$\begin{eqnarray}\displaystyle \lim _{\unicode[STIX]{x1D706}\rightarrow 0+}\unicode[STIX]{x1D706}^{q}\unicode[STIX]{x1D707}(\{x\in \mathbb{R}^{n}:M_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6FC}}f(x)>\unicode[STIX]{x1D706}\})=\frac{\unicode[STIX]{x1D714}_{n-1}}{(n+\unicode[STIX]{x1D6FD})\unicode[STIX]{x1D707}(B(e_{1},1))}\Vert f\Vert _{L^{1}(\mathbb{R}^{n},d\unicode[STIX]{x1D707})}^{q}, & & \displaystyle \nonumber\\ \displaystyle \lim _{\unicode[STIX]{x1D706}\rightarrow 0+}\unicode[STIX]{x1D706}^{q}\unicode[STIX]{x1D707}\left(\left\{x\in \mathbb{R}^{n}:\left|M_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6FC}}f(x)-\frac{\Vert f\Vert _{L^{1}(\mathbb{R}^{n},d\unicode[STIX]{x1D707})}}{\unicode[STIX]{x1D707}(B(x,|x|))^{1-\unicode[STIX]{x1D6FC}/n}}\right|>\unicode[STIX]{x1D706}\right\}\right)=0, & & \displaystyle \nonumber\end{eqnarray}$$
which is new and stronger than the previous result even if $\unicode[STIX]{x1D6FD}=0$ . Meanwhile, the corresponding results for the un-centered maximal functions as well as the fractional integral operators with respect to measure $\unicode[STIX]{x1D707}$ are also obtained.

Hide All

Supported by the NNSF of China (Nos. 11771358, 11471041) and the NSF of Fujian Province of China (No. 2015J01025). Huoxiong Wu is the corresponding author.

Hide All
[1] Coifman, R. and Weiss, G., Analyse harmonique non-commutative sur certains espaces homogènes . Lecture Note in Mathematics, 242, Springer-Verlag, Berlin-New York, 1971.
[2] Ding, Y. and Lai, X., L 1-Dini conditions and limiting behavior of weak type estimates for singular integrals . Rev. Mat. Iberoam. 33(2017), no. 4, 12671284.
[3] Ding, Y. and Lai, X., Weak type (1, 1) behavior for the maximal operator with L 1-Dini kernel . Potential Anal. 47(2017), no. 2, 169187.
[4] Gatto, A., Gutiérrez, C., and Wheeden, R., On weighted fractional integrals. In: Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, III, 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 124–137.
[5] Heinonen, J., Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001.
[6] Hu, J. and Huang, X., A note on the limiting weak-type behavior for maximal operators . Proc. Amer. Math. Soc. 136(2008), 15991607.
[7] Janakiraman, P., Limiting weak-type behavior for singular integral and maximal operators . Trans. Amer. Math. Soc. 358(2006), no. 5, 19371952.
[8] Pan, W. J., Fractional integrals on spaces of homogeneous type . Approx. Theory Appl. 8(1992), 115.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed