[1]
Banica, T., Quantum automorphism groups of homogeneous graphs. J. Funct. Anal. 224 (2005), 243–280. http://dx.doi.org/!0.1016/j.jfa.2004.11.002
[2]
Banica, T. and Bichon, J., Quantum automorphism groups of vertex-transitive graphs of order ≤ 11. J. Algebraic Combin. 26 (2007), no. 1, 83-105. http://dx.doi.org/10.1007/s10801-006-0049-9
[3]
Banica, T., Bichon, J., and Chenevier, G., Graphs having no quantum symmetry. Ann. Inst. Fourier (Grenoble) 57 (2007), 955–971. http://dx.doi.org/10.5802/aif.2282
[4]
Bhowmick, J., Goswami, D., and Skalski, A., Quantum isometry groups of 0-dimensional manifolds. Trans. Amer. Math. Soc. 363 (2011), no. 2, 901-921. http://dx.doi.Org/10.1090/S0002-9947-2010-05141-4
[5]
Bichon, J., Quantum automorphism groups of finite graphs. Proc. Amer. Math. Soc. 131 (2003), 665–673. http://dx.doi.Org/10.1090/S0002-9939-02-06798-9
[6]
Bichon, J., Free wreath product by the quantum permutation group. Algebr. Represent. Theory 7 (2004), 343–362. http://dx.doi.Org/10.1023/B:ALCE.0000042148.97035.ca
[7]
Chassaniol, A., Quantum automorphism group of the lexicographic product of finite regular graphs. J. Algebra 456 (2016), 23–45. http://dx.doi.Org/10.1016/j.jalgebra.2O16.01.036
[8]
Cuntz, J. and Krieger, W., A class of C*-algebras and topological Markov chains. Invent. Math. 56 (1980), no. 3, 251-268. http://dx.doi.org/10.1007/BF01390048
[9]
Eilers, S., Restorff, G., Ruiz, E., and Sorensen, A., The complete classification of unital graph C*-algebras: Geometric and strong. arxiv:1611.07120
[10]
Fulton, M. B., The quantum automorphism group and undirected trees. Ph.D. Thesis, Virginia Polytechnic Institute and State University, 2006.
[11]
Goswami, D. and Bhowmick, J., Quantum isometry groups. Infosys Science Foundation Series in Mathematical Science, Springer, New Delhi, 2016. http://dx.doi.Org/10.1007/978-81-322-3667-2
[12]
Joardar, S. and Mandai, A., Quantum symmetry of graph C* -algebras associated with connected graphs. 2017. arxiv:1 711.04253
[13]
Neshveyev, S. and Tuset, L., Compact quantum groups and their representation categories. Cours Specialises, 20, Société Mathématique de France, Paris, 2013.
[14]
Podles, P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups. Comm. Math. Phys. 170 (1995), 1–20. http://dx.doi.Org/10.1007/BF02099436
[15]
Raeburn, I., Graph algebras. CBMS Regional Conference Series in Mathematics, 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2005. http://dx.doi.Org/10.1090/cbms/103
[16]
Speicher, R. and Weber, M., Quantum groups with partial commutation relations. arxiv:1603.09192
[17]
Timmermann, T., An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zurich, 2008. http://dx.doi.Org/10.4171/043
[18]
Wang, S., Quantum symmetry groups of finite spaces. Comm. Math. Phys. 195 (1998), 195–211. http://dx.doi.Org/10.1OO7/sOO22OOO5O385
[19]
Woronowicz, S. L., Compact matrix pseudogroups. Comm. Math. Phys. 111 (1987), 613–665. http://dx.doi.Org/10.1007/BF01219077
[20]
Woronowicz, S. L., A remark on compact matrix quantum groups. Lett. Math. Phys. 21 (1991), no. 1, 35-39. http://dx.doi.Org/10.1007/BF00414633