Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-5rzhg Total loading time: 0.289 Render date: 2021-11-30T11:54:14.797Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Ramanujan and the Modular j-Invariant

Published online by Cambridge University Press:  20 November 2018

Bruce C. Berndt
Affiliation:
Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, IL 61801 USA
Heng Huat Chan
Affiliation:
Department of Mathematics, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new infinite product ${{t}_{n}}$ was introduced by S. Ramanujan on the last page of his third notebook. In this paper, we prove Ramanujan’s assertions about ${{t}_{n}}$ by establishing new connections between the modular $j$ -invariant and Ramanujan’s cubic theory of elliptic functions to alternative bases. We also show that for certain integers $n$ , ${{t}_{n}}$ generates the Hilbert class field of $\mathbb{Q}\left( \sqrt{-n} \right)$ . This shows that ${{t}_{n}}$ is a new class invariant according to H. Weber’s definition of class invariants.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Berndt, B. C., Ramanujan's Notebooks, Part III. Springer-Verlag, New York, 1991.CrossRefGoogle Scholar
[2] Berndt, B. C., Ramanujan's Notebooks, Part V. Springer-Verlag, New York, 1998.CrossRefGoogle Scholar
[3] Berndt, B. C., Bhargava, S. and Garvan, F. G., Ramanujan's theories of elliptic functions to alternative bases. Trans. Amer.Math. Soc. 347 (1995), 41634244.Google Scholar
[4] Berndt, B. C., Chan, H. H. and Zhang, L.-C., Ramanujan's class invariants, Kronecker's limit formula, and modular equations. Trans. Amer.Math. Soc. 349 (1997), 21252173.Google Scholar
[5] Berndt, B. C. and Rankin, R. A., Ramanujan: Letters and Commentary. American Mathematical Society, Providence, RI; London Mathematical Society, London, 1995.Google Scholar
[6] Berwick, W. E., Modular invariants expressible in terms of quadratic and cubic irrationalities. Proc. London Math. Soc. 28 (1927), 5369.Google Scholar
[7] Birch, B. J., Weber's class invariants. Mathematika 16 (1969), 283294.Google Scholar
[8] Borwein, J. M. and Borwein, P. B., Pi and the AGM. John Wiley, New York, 1987.Google Scholar
[9] Borwein, J. M. and Borwein, P. B., A cubic counterpart of Jacobi's identity and the AGM. Trans. Amer.Math. Soc. 323 (1991), 691701.Google Scholar
[10] Borwein, J. M., Borwein, P. B. and Garvan, F. G., Some cubic identities of Ramanujan. Trans. Amer.Math. Soc. 343 (1994), 3547.Google Scholar
[11] Chan, H. H., On Ramanujan's cubic transformation formula for 2f1(1/3, 2/3; 1;z). Math. Proc. Camb. Phil. Soc. 124 (1998), 193204.Google Scholar
[12] Chan, H. H. and Lang, M.-L., On Ramanujan's modular equations and Atkin-Lehner involutions. Israel J. Math. 103 (1998), 116.Google Scholar
[13] Chan, H. H. and Liaw, W.-C., On Russell type modular equations. Canad. J. Math., to appear.Google Scholar
[14] Chandrasekharan, K., Elliptic Functions. Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
[15] Cox, D. A., Primes of the form x2 + ny2 . Wiley, New York, 1989.Google Scholar
[16] Deuring, M., Die Klassenk¨orper der komplexen Multiplikation. Enz. Math. Wiss. Band I2, Heft 10 Teil II, Stuttgart, 1958.Google Scholar
[17] Greenhill, A. G., Complex multiplication moduli of elliptic functions. Proc. London Math. Soc. 19(1887–88), 301364.Google Scholar
[18] Greenhill, A. G., Table of complex multiplication moduli. Proc. London Math. Soc. 21(1889–90), 403422.Google Scholar
[19] Greenhill, A. G., The Applications of Elliptic Functions. Dover, New York, 1959.Google Scholar
[20] Newman, M., Construction and application of a class of modular functions II. Proc. London Math. Soc. 9 (1959), 373387.Google Scholar
[21] Ramanujan, S., Notebooks. 2 vols., Tata Institute of Fundamental Research, Bombay, 1957.Google Scholar
[22] Russell, R., On kλ − k′λ′ modular equations. Proc. London Math. Soc. 19 (1887), 90111.Google Scholar
[23] Russell, R., On modular equations. Proc. LondonMath. Soc. 21 (1890), 351395.Google Scholar
[24] S¨ohngen, H., Zur komplexen Multiplikation.Math. Ann. 111 (1935), 302328.Google Scholar
[25] Stark, H. M., Class numbers of complex quadratic fields. In: Modular functions of one variable I (ed. W. Kuijk), Lecture Notes in Math. 320(1973), Springer-Verlag, 154174.Google Scholar
[26] Weber, H., Lehrbuch der Algebra, dritter Band. Chelsea, New York, 1961.Google Scholar
You have Access
20
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ramanujan and the Modular j-Invariant
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Ramanujan and the Modular j-Invariant
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Ramanujan and the Modular j-Invariant
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *