Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T19:32:50.190Z Has data issue: false hasContentIssue false

Some matrix inequalities of log-majorization type

Published online by Cambridge University Press:  26 February 2021

Bo-Yan Xi*
Affiliation:
College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia Autonomous Region 028043P.R. China e-mail: baoyintu78@imun.edu.cn
Fuzhen Zhang
Affiliation:
Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL33314, USA e-mail: zhang@nova.edu

Abstract

The purpose of this paper is twofold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua–Marcus’ inequalities. Our results are stronger and more general than the existing ones.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Xi’s work was partially supported by NNSF of China grant no. 11361038.

References

Amir-Moéz, A. R., Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations. Duke Math. J. 23(1956), no. 3, 463476.CrossRefGoogle Scholar
Ando, T., Log majorization and complementary Golden–Thompson type inequalities. Linear Algebra Appl. 197/198(1994), 113131.10.1016/0024-3795(94)90484-7CrossRefGoogle Scholar
Ando, T., Positivity of operator-matrices of Hua-type. Banach J. Math. Anal. 2(2008), no. 2, 18.CrossRefGoogle Scholar
Fan, K., On a theorem of Weyl concerning eigenvalues of linear transformations I. Proc. Natl. Acad. Sci. USA 35(1949), no. 11, 652655.10.1073/pnas.35.11.652CrossRefGoogle ScholarPubMed
Fan, K., On a theorem of Weyl concerning eigenvalues of linear transformations II. Proc. Natl. Acad. Sci. USA 36(1950), no. 1, 3135.10.1073/pnas.36.1.31CrossRefGoogle ScholarPubMed
Fiedler, M., Bounds for the determinant of the sum of Hermitian matrices. Proc. Amer. Math. Soc. 30(1971), no. 1, 2731.CrossRefGoogle Scholar
Hardy, G. H., Littlewood, J. E., and Pólya, G., Inequalities. Cambridge University Press, New York, 1934, 1st ed.; 1952, 2nd ed.; Reprint, 1994.Google Scholar
Hartfiel, D. J., An extension of Haynsworth’s determinant inequality. Proc. Amer. Math. Soc. 41(1973), no. 41, 463465.Google Scholar
Hiai, F. and Lim, Y., Log-majorization and Lie–Trotter formula for the Cartan barycenter on probability measure spaces. J. Math. Anal. Appl. 453(2017), no. 1, 195211.10.1016/j.jmaa.2017.03.027CrossRefGoogle Scholar
Hua, L.-K., Inequalities involving determinants. Acta Math. Sinica 5(1955), 463470 (in Chinese). See also Transl. Amer. Math. Soc. Ser. II 32(1963), 265–272.Google Scholar
Lidskiǐ, V. B., The proper values of the sum and product of symmetric matrices (in Russian). Doklady Akad. Nauk SSSR 75(1950), 769772.Google Scholar
Marcus, M., On a determinantal inequality. Amer. Math. Monthly 65(1958), no. 4, 266268.CrossRefGoogle Scholar
Marshall, A. W., Olkin, I., and Arnold, B. C., Inequalities: theory of majorization and its application. 2nd ed., Springer, New York, 2011.CrossRefGoogle Scholar
Oppenheim, A., Inequalities connected with definite Hermitian forms II. Amer. Math. Monthly 61(1954), 463466.10.1080/00029890.1954.11988498CrossRefGoogle Scholar
Paige, C. C., Styan, G. P. H., Wang, B.-Y., and Zhang, F., Huas matrix equality and Schur complements. Int. J. Inform. Syst. Sci. 4(2008), no. 1, 124135.Google Scholar
Thompson, R. C. and Freede, L. J., On the eigenvalues of sums of Hermitian matrices. Linear Algebra Appl. 4(1971), 369376.CrossRefGoogle Scholar
Wang, B.-Y. and Zhang, F., Some inequalities for the eigenvalues of the product of positive semidefinite Hermitian matrices. Linear Algebra Appl. 160(1992), 113118.CrossRefGoogle Scholar
Weyl, H., Inequalities between two kinds of eigenvalues of a linear transformation. Proc. Natl. Acad. Sci. USA 35(1949), no. (7), 408411.CrossRefGoogle ScholarPubMed
Wielandt, H., An extremum property of sums of eigenvalues. Proc. Amer. Math. Soc. 6(1955), no. 1, 106110.10.1090/S0002-9939-1955-0067842-9CrossRefGoogle Scholar
Xi, B.-Y. and Zhang, F., Inequalities for selected eigenvalues of the product of matrices. Proc. Amer. Math. Soc. 147(2019), no. 9, 37053713. https://doi.org/10.1090/proc/14529 CrossRefGoogle Scholar
Xu, C.-Q., Xu, Z.-D., and Zhang, F., Revisiting Hua–Marcus–Bellman–Ando inequalities on contractive matrices. Linear Algebra Appl. 430(2009), nos. 5–6, 14991508.CrossRefGoogle Scholar
Xu, G.-H., Xu, C.-Q., and Zhang, F., Contractive matrices of Hua type. Linear Multilinear Algebra 59(2011), no. 2, 159172.CrossRefGoogle Scholar
Zhang, F., Matrix theory: basic results and techniques. 2nd ed., Springer, New York, 2011.10.1007/978-1-4614-1099-7CrossRefGoogle Scholar