Skip to main content
×
×
Home

Sparse Bounds for a Prototypical Singular Radon Transform

  • Richard Oberlin (a1)
Abstract

We use a variant of a technique used by M. T. Lacey to give sparse $L^{p}(\log (L))^{4}$ bounds for a class of model singular and maximal Radon transforms.

Copyright
Footnotes
Hide All

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2017 semester.

Footnotes
References
Hide All
[BBL16] Benea, C., Bernicot, F., and Luque, T., Sparse bilinear forms for Bochner Riesz multipliers and applications . Trans. London Math. Soc. 4(2017), no. 1, 110128. https://doi.org/10.1112/tlm3.12005.
[BFP16] Bernicot, F., Frey, D., and Petermichl, S., Sharp weighted norm estimates beyond Calderón-Zygmund theory . Anal. PDE 9(2016), no. 5, 10791113. https://doi.org/10.2140/apde.2016.9.1079.
[CK17] Cladek, L. and Krause, B., Improved endpoint bounds for the lacunary spherical maximal operator. 2017. arxiv:1703.01508.
[CO] Cladek, L. and Ou, Y., Sparse domination of Hilbert transforms along curves. 2017. arxiv:1704.07810.
[CDO16] Culiuc, A., Di Plinio, F., and Ou, Y., Domination of multilinear singular integrals by positive sparse forms. 2016. arxiv:1603.05317.
[CKL16] Culiuc, A., Kesler, R., and Lacey, M. T., Sparse bounds for the discrete cubic Hilbert transform. 2016. arxiv:1612.08881.
[DDU16] Di Plinio, F., Do, Y. Q., and Uraltsev, G.N., Positive sparse domination of variational Carleson operators. 2016. arxiv:1612.03028.
[DRdF86] Duoandikoetxea, J. and Rubio de Francia, J. L., Maximal and singular integral operators via Fourier transform estimates . Invent. Math. 84(1986), no. 3, 541561. https://doi.org/10.1007/BF01388746.
[KL17] Krause, B. and Lacey, M. T., Sparse bounds for maximally truncated oscillatory singular integrals. 2017. arxiv:1701.05249.
[Lac17a] Lacey, M. T., Sparse bounds for spherical maximal functions. 2017. arxiv:1702.08594.
[Lac17b] Lacey, M. T., An elementary proof of the A 2 bound . Israel J. Math. 217(2017), 181195. https://doi.org/10.1007/s11856-017-1442-x.
[Ler10] Lerner, A. K., A pointwise estimate for the local sharp maximal function with applications to singular integrals . Bull. Lond. Math. Soc. 42(2010), no. 5, 843856. https://doi.org/10.1112/blms/bdq042.
[Ler16] Lerner, A. K., On pointwise estimates involving sparse operators . New York J. Math. 22(2016), 341349.
[LN15] Lerner, A. K. and Nazarov, F., Intuitive dyadic calculus: the basics. 2015. arxiv:1508.05639.
[NPTV17] Nazarov, F., Petermichl, S., Treil, S., and Volberg, A., Convex body domination and weighted estimates with matrix weights . Adv. Math. 318(2017), 279306. https://doi.org/10.1016/j.aim.2017.08.001.
[STW04] Seeger, A., Tao, T., and Wright, J., Singular maximal functions and Radon transforms near L 1 . Amer. J. Math. 126(2004), no. 3, 607647.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed