Hostname: page-component-7dd5485656-hw7sx Total loading time: 0 Render date: 2025-10-24T12:55:23.771Z Has data issue: false hasContentIssue false

Study of weaving frames in Krein spaces

Published online by Cambridge University Press:  19 September 2025

Avinash Bhardwaj
Affiliation:
Department of Mathematics, SRM University , AP - Andhra Pradesh, Amaravati 522240, India e-mail: avinashbhardwaj320@gmail.com
Animesh Bhandari*
Affiliation:
Department of Mathematics, SRM University , AP - Andhra Pradesh, Amaravati 522240, India e-mail: avinashbhardwaj320@gmail.com

Abstract

In this article, we study various properties and characterizations of weaving frames in Krein spaces. In support of our findings, several examples and counter examples are provided, illustrating the applicability of the theoretical results. Additionally, we extend the discussion to an important application in probabilistic erasure, highlighting how weaving frames can be used to mitigate data loss in such scenarios.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ando, T., Linear operators on Krein spaces, Hokkaido University, Sapporo, 1979.Google Scholar
Balan, R., Okoudjou, K. A., and Poria, A., On a problem by Hans Feichtinger . Oper. Matrices 12(2018), 881891.Google Scholar
Balazs, P., Feichtinger, H. G., Hampejs, M., and Kracher, G., Double preconditioning for Gabor frames . IEEE Trans. Signal Process. 54(2006), 45974610.Google Scholar
Bemrose, T., Casazza, P. G., Gröchenig, K., Lammers, M. C., and Lynch, R. G., Weaving frames . Oper. Matrices 10(2016), 10931116.Google Scholar
Bognár, J., Indefinite inner product spaces, Springer-Verlag, Berlin Heidelberg New York, 1974.Google Scholar
Bolcskei, H., Hlawatsch, F., and Feichtinger, H. G., Frame-theoretic analysis of oversampled filter banks . IEEE Trans. Signal Process. 46(1998), 32563268.Google Scholar
Bownik, M. and Speegle, D., The Feichtinger conjecture for wavelet frames, Gabor frames and frames of translates . Can. J. Math. 58(2006), 11211143.Google Scholar
Christensen, O., An introduction to frames and Riesz bases, Birkhauser, Boston, MA, 2003.Google Scholar
Christensen, O., Datta, S., and Kim, R. Y., Equiangular frames and generalizations of the Welch bound to dual pairs of frames . Linear Multilinear Algebra 68(2020), 24952505.Google Scholar
Czaja, W. and Rzeszotnik, Z., Pseudodifferentia operators and Gabor frames: Spectral asymptotics . Math. Nachr. 233(2002), 7788.Google Scholar
Czaja, W., Speegle, D., and Kutyniok, G., The geometry of sets of parameters of wave packet frames . Appl. Comput. Harmon. Anal. 20(2006), 108125.Google Scholar
Daubechies, I., Grossmann, A., and Meyer, Y., Painless nonorthogonal expansions . J. Math. Phys. 27(1986), 12711283.Google Scholar
Duffin, R. S. and Schaeffer, A. C., A class of nonharmonic Fourier series . Trans. Am. Math. Soc. 72(1952), 341366.Google Scholar
Esmeral, K., Ferrer, O. and Wagner, E., Frames in Krein spaces arising from a non-regular W-metric . Banach J. Math. Anal. 9(2015), 116.Google Scholar
Feichtinger, H. G. and Gröchenig, K., Gabor frames and time-frequency analysis of distributions . J. Funct. Anal. 146(1997), 464495.Google Scholar
Feichtinger, H. G. and Janssen, A., Validity of WH-frame bound conditions depends on lattice parameters . Appl. Comput. Harmon. Anal. 8(2000), 104112.Google Scholar
Giribet, J. I., Maestripieri, A., Martínez Pería, F., and Massey, P. G., On frames for Krein spaces . J. Math. Anal. Appl. 393(2012), 122137.Google Scholar
Gumber, A. and Shukla, N. K., Orthogonality of a pair of frames over locally compact abelian groups . J. Math. Anal. Appl. 458(2018), 13441360.Google Scholar
Han, D., Kornelson, K., Larson, D., and Weber, E., Frames for undergraduates, Student Mathematical Library, American Mathematical Society, Rhode Island, 2007.Google Scholar
Han, D. and Larson, D. R., Frames, bases and group representations . Mem. Am. Math. Soc. 147(2000), no. 697, x+94 pp.Google Scholar
Heil, C., Jorgensen, P. E. T., and Larson, D. R., Wavelets, frames and operator theory, Contemporary Mathematics, American Mathematical Society, College Park, Maryland, 2004.Google Scholar
Jyoti, D., Vashisht, L. K., and Verma, G., Sums of matrix valued wave packet frames in ${L}^2({\mathbb{R}}^d,{\mathbb{C}}^{s\times r})$ . Glas. Math. 53(2018), 153177.Google Scholar
Parzen, E., Stochastic processes. Vol. 24. SIAM, San Francisco, 1999.Google Scholar
Poria, A., Positive weight function and classification of $g$ -frames . Numer. Funct. Anal. Optim. 41(2020), 950968.Google Scholar
Rudelson, M., Random vectors in the isotropic position . Journal Funct. Anal. 164(1999), 6072.Google Scholar