Skip to main content Accesibility Help
×
×
Home

Weighted Lp Boundedness of Pseudodifferential Operators and Applications

  • Nicholas Michalowski (a1), David J. Rule (a2) and Wolfgang Staubach (a2)
Abstract

In this paper we prove weighted norm inequalities with weights in the Ap classes, for pseudodifferential operators with symbols in the class that fall outside the scope of Calderón– Zygmund theory. This is accomplished by controlling the sharp function of the pseudodifferential operator by Hardy–Littlewood type maximal functions. Our weighted norm inequalities also yield Lp boundedness of commutators of functions of bounded mean oscillation with a wide class of operators in .

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Weighted Lp Boundedness of Pseudodifferential Operators and Applications
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Weighted Lp Boundedness of Pseudodifferential Operators and Applications
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Weighted Lp Boundedness of Pseudodifferential Operators and Applications
      Available formats
      ×
Copyright
References
Hide All
[1] Álvarez, J. and Hounie, J., Estimates for the kernel and continuity properties of pseudo-differential operators. Ark. Mat. 28(1990), no. 1, 122. http://dx.doi.org/10.1007/BF02387364
[2] Auscher, P. and Taylor, M., Paradifferential operators and commutator estimates. Comm. Partial Differential Equations 20(1995), no. 9–10, 17431775. http://dx.doi.org/10.1080/03605309508821150
[3] Chanillo, S., Remarks on commutators of pseudo-differential operators. In: Multidimensional complex analysis and partial differential equations (São Carlos, 1995), Contemp. Math., 205, American Mathematical Society, Providence, RI, 1997, pp. 3337.
[4] Chanillo, S. and Torchinsky, A., Sharp function and weighted Lp estimates for a class of pseudodifferential operators. Ark. Mat. 24(1986), no. 1, 125. http://dx.doi.org/10.1007/BF02384387
[5] Coifman, R. R., Rochberg, R., and Weiss, G., Factorization theorems for Hardy spaces in several variables. Ann. of Math. (2) 103(1976), no. 3, 611635. http://dx.doi.org/10.2307/1970954
[6] Germain, P., Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system. J. Anal. Math. 105(2008), 169196. http://dx.doi.org/10.1007/s11854-008-0034-4
[7] Grafakos, L., Classical and modern Fourier analysis. Pearson Education, Inc., Upper Saddle River, NJ, 2004.
[8] Hörmander, L., Pseudo-differential operators and hypoelliptic equations. Singular integrals (Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966), American Mathematical Society, Providence, RI, 1967, pp. 138183.
[9] Kurtz, D. S. and Wheeden, R., Results on weighted norm inequalities for multipliers. Trans. Amer. Math. Soc. 255(1979), 343362. http://dx.doi.org/10.1090/S0002-9947-1979-0542885-8
[10] Miller, N., Weighted Sobolev spaces and pseudodifferential operators with smooth symbols. Trans. Amer.Math. Soc. 269(1982), no. 1, 91109. http://dx.doi.org/10.1090/S0002-9947-1982-0637030-4
[11] Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.
[12] Stein, E. M. and Weiss, G., Interpolation of operators with change of measures. Trans. Amer. Math. Soc. 87(1958), 159172. http://dx.doi.org/10.1090/S0002-9947-1958-0092943-6
[13] Stein, E. M. and Weiss, G., Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, 32, Princeton University Press, Princeton, NJ, 1971.
[14] Stroffolini, B., Elliptic systems of PDE with BMO-coefficients. Potential Anal. 15(2001), no. 3, 285299. http://dx.doi.org/10.1023/A:1011290420956
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Mathematical Bulletin
  • ISSN: 0008-4395
  • EISSN: 1496-4287
  • URL: /core/journals/canadian-mathematical-bulletin
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed