Hostname: page-component-7f64f4797f-bnl7t Total loading time: 0 Render date: 2025-11-11T12:06:21.403Z Has data issue: false hasContentIssue false

A rainbow Dirac theorem for loose Hamilton cycles in hypergraphs

Published online by Cambridge University Press:  11 November 2025

Amarja Kathapurkar
Affiliation:
University of Birmingham, Birmingham, UK
Patrick Morris*
Affiliation:
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Guillem Perarnau
Affiliation:
Universitat Politècnica de Catalunya (UPC), Barcelona, Spain Centre de Recerca Matemàtica, Bellaterra, Spain
*
Corresponding author: Patrick Morris; Email: pmorrismaths@gmail.com

Abstract

A meta-conjecture of Coulson, Keevash, Perarnau, and Yepremyan [12] states that above the extremal threshold for a given spanning structure in a (hyper-)graph, one can find a rainbow version of that spanning structure in any suitably bounded colouring of the host (hyper-)graph. We solve one of the most pertinent outstanding cases of this conjecture by showing that for any $1\leq j\leq k-1$, if $G$ is a $k$-uniform hypergraph above the $j$-degree threshold for a loose Hamilton cycle, then any globally bounded colouring of $G$ contains a rainbow loose Hamilton cycle.

Information

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

*

Research supported by EPSRC Research grant EP/R034389/1.

Research supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Walter Benjamin programme - project number 504502205 and by the European Union’s Horizon Europe Marie Sk lodowska-Curie grant RAND-COMB-DESIGN - project number 101106032 .

Research supported by the grants RED2022-134947-T, PID2023-147202NB-I00, PCI2024-155080-2 and the Programme Severo Ochoa y María de Maeztu por Centros y Unidades de Excelencia en I&D (CEX2020-001084-M), all of them funded by MICIU/AEI/10.13039/501100011033.

References

Albert, M., Frieze, A. and Reed, B. (1995) Multicoloured Hamilton cycles. Electron. J. Comb. 2(1) R10.10.37236/1204CrossRefGoogle Scholar
Alon, N. and Spencer, J. (2016) The probabilistic method. Fourth ed. Wiley Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc, Hoboken, NJ.Google Scholar
Alvarado, J. D., Kohayakawa, Y., Lang, R., Mota, G. O. and Stagni, H. (2023) Resilience for loose Hamilton cycles . arXiv preprint arXiv: 2309.14197. to appear in Forum of Mathematics, Sigma.10.1016/j.procs.2023.08.229CrossRefGoogle Scholar
Antoniuk, S., Kamčev, N. and Ruciński, A. (2023) Properly colored Hamilton cycles in Dirac-type hypergraphs. Electron. J. Comb. 30 P144.Google Scholar
Bissacot, R., Fernández, R., Procacci, A. and Scoppola, B. (2011) An improvement of the Lovász local lemma via cluster expansion. Comb. Prob. Comp. 20(5) 709719.10.1017/S0963548311000253CrossRefGoogle Scholar
Böttcher, J., Schacht, M. and Taraz, A. (2009) Proof of the bandwidth conjecture of Bollobás and Komlós . Math. Ann. 343(1) 175205.10.1007/s00208-008-0268-6CrossRefGoogle Scholar
Brualdi, R. A. and Ryser, H.J. (1991) Combinatorial matrix theory, Vol. 39, Springer.10.1017/CBO9781107325708CrossRefGoogle Scholar
Buß, E., Hàn, H. and Schacht, M. (2013) Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs . J. Comb. Theory, Ser. B 103(6) 658678.10.1016/j.jctb.2013.07.004CrossRefGoogle Scholar
Cano, P., Perarnau, G. and Serra, O. (2017) Rainbow spanning subgraphs in bounded edge–colourings of graphs with large minimum degree. Electron. Notes Discrete Math. 61 199205.10.1016/j.endm.2017.06.039CrossRefGoogle Scholar
Chakraborti, D., Christoph, M., Hunter, Z., Montgomery, R. and Petrov, T. (2024) Almost-full transversals in equi-n-squares. arXiv preprint arXiv: 2412.07733.Google Scholar
Chernoff, H. (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 493507.10.1214/aoms/1177729330CrossRefGoogle Scholar
Coulson, M., Keevash, P., Perarnau, G. and Yepremyan, L. (2020) Rainbow factors in hypergraphs. J. Comb. Theory, Ser. A 172 105184.10.1016/j.jcta.2019.105184CrossRefGoogle Scholar
Coulson, M. and Perarnau, G. (2019) Rainbow matchings in Dirac bipartite graphs. Random Struct. Algor. 55(2) 271289.10.1002/rsa.20835CrossRefGoogle Scholar
Coulson, M. (2020) A rainbow Dirac’s theorem. SIAM J. Discrete. Math. 34(3) 16701692.10.1137/18M1218881CrossRefGoogle Scholar
de Oliveira Bastos, J., Mota, G. O., Schacht, M., Schnitzer, J. and Schulenburg, F. (2017) Loose Hamiltonian cycles forced by large ( $k-2$ )-degree—approximate version. SIAM J. Discrete Math. 31(4) 23282347.10.1137/16M1065732CrossRefGoogle Scholar
Dirac, G. A. (1952) Some theorems on abstract graphs. Proc. Lond. Math. Soc. 3(1) 6981.10.1112/plms/s3-2.1.69CrossRefGoogle Scholar
Dudek, A., Frieze, A. and Ruciński, A. (2012) Rainbow Hamilton cycles in uniform hypergraphs . Electron. J. Comb. 19(1) P46.10.37236/2055CrossRefGoogle Scholar
Erdős, P., Něsetril, J. and Rödl, V. (1983) Some problems related to partitions of edges of a graph, Graphs and other combinatorial topics, Teubner, Leipzig 5463.Google Scholar
Erdős, P. and Spencer, J. (1991) Lopsided Lovász local lemma and Latin transversals. Discrete Appl. Math. 30(2-3) 151154.10.1016/0166-218X(91)90040-4CrossRefGoogle Scholar
Ghouila-Houri, A. (1960) Une condition suffisante d’existence d’un circuit hamiltonien. C. R. Acad. Sci. Paris 251 495497.Google Scholar
Glock, S. and Joos, F. (2020) A rainbow blow‐up lemma. Random Struct. Algor. 56(4) 10311069.10.1002/rsa.20907CrossRefGoogle Scholar
Hahn, G. and Thomassen, C. (1986) Path and cycle sub-Ramsey numbers and an edge-colouring conjecture. Discrete Math. 62(1) 2933.10.1016/0012-365X(86)90038-5CrossRefGoogle Scholar
Ha‘n, H. and Schacht, M. (2010) Dirac-type results for loose Hamilton cycles in uniform hypergraphs. J. Comb. Theory, Ser. B 100(3) 332346.10.1016/j.jctb.2009.10.002CrossRefGoogle Scholar
Janson, S., uczak, T. L.- and Ruciński, A. (2000) Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York.10.1002/9781118032718CrossRefGoogle Scholar
Janson, S. (1998) New versions of Suen’s correlation inequality. Random Struct. Algor. 13(3-4) 467483.10.1002/(SICI)1098-2418(199810/12)13:3/4<467::AID-RSA15>3.0.CO;2-W3.0.CO;2-W>CrossRefGoogle Scholar
Keevash, P., Kühn, D., Mycroft, R. and Osthus, D. (2011) Loose Hamilton cycles in hypergraphs. Discrete Math. 311(7) 544559.10.1016/j.disc.2010.11.013CrossRefGoogle Scholar
Komlós, J., Sárközy, G. N. and Szemerédi, E. (1997) Blow-up lemma. Combinatorica 17 109123.10.1007/BF01196135CrossRefGoogle Scholar
Kühn, D. and Osthus, D. (2006) Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. J. Comb. Theory, Ser. B 96(6) 767821.10.1016/j.jctb.2006.02.004CrossRefGoogle Scholar
Molloy, M. and Reed, B. (2002) Graph colouring and the probabilistic method, Vol. 23, Springer Science & Business Media.10.1007/978-3-642-04016-0CrossRefGoogle Scholar
Montgomery, R. (2023) A proof of the Ryser-Brualdi-Stein conjecture for large even n, arXiv preprint arXiv: 2310.19779.Google Scholar
Pokrovskiy, A. and Sudakov, B. (2019) A counterexample to Stein’s Equi-n-square conjecture . Proc. Am. Math. Soc. 147(6) 22812287.10.1090/proc/14220CrossRefGoogle Scholar
Rödl, V., Ruciński, A. and Szemerédi, E. (2006) A Dirac-type theorem for, 3-uniform hypergraphs. Comb. Prob. Comp. 15(1-2) 229251.10.1017/S0963548305007042CrossRefGoogle Scholar
Ryser, H. J. (1967) Neuere probleme der kombinatorik. In Vorträge über Kombinatorik, Oberwolfach, Vol. 69, 35. no. 91.Google Scholar
Stein, S. K. (1975) Transversals of Latin squares and their generalizations. Pac. J. Math. 59(2) 567575.10.2140/pjm.1975.59.567CrossRefGoogle Scholar
Sudakov, B. (2017) Robustness of graph properties. In Surveys in Combinatorics 2017, Vol. 440 (Claesson, A. Dukes, M. Kitaev, S. Manlove, D. Meeks., K.eds), London Mathematical Society Lecture Note Series. Illustrated Publisher, Cambridge University Press, pp. 372408.10.1017/9781108332699.009CrossRefGoogle Scholar
Suen, W. C. S. (1990) A correlation inequality and a poisson limit theorem for nonoverlapping balanced subgraphs of a random graph. Random Struct. Algor. 1(2) 231242.10.1002/rsa.3240010210CrossRefGoogle Scholar
Talagrand, M. (1995) Concentration of measure and isoperimetric inequalities in product spaces , Publications Mathématiques de l’Institut des Hautes Etudes Scientifiques 81, 73205,10.1007/BF02699376CrossRefGoogle Scholar
Zhao, Y. (2016) Recent advances on Dirac-type problems for hypergraphs. In Recent trends in combinatorics, Vol. 159 (A. Beveridge, J. Griggs, L. Hogben, G. Musiker, P. Tetali, eds), The IMA Volumes in Mathematics and its Applications, Springer, Cham, pp. 145165.10.1007/978-3-319-24298-9_6CrossRefGoogle Scholar