[1]
Alon, N. and Spencer, J. H. (2008) The Probabilistic Method, third edition, Wiley.

[2]
Beck, J. (1978) On 3-chromatic hypergraphs. Discrete Math.
24
127–137.

[3]
Berlekamp, E. (1968) A construction for partitions which avoid long arithmetic progressions. Canad. Math. Bull.
11
409–414.

[4]
Cherkashin, D. D. and Kozik, J. (2015) A note on random greedy coloring of uniform hypergraphs. Random Struct. Alg.
47
407–416.

[5]
Erdős, P. and Lovász, L. (1973) Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and Finite Sets, Vol. 10 of Colloquia Mathematica Societatis Janos Bolyai, North-Holland, pp. 609–627.

[6]
Erdős, P. and Radó, R. (1952) Combinatorial theorems on classifications of subsets of given set. Proc. London Math. Soc.
2
417–439.

[7]
Gowers, W. T. (2001) A new proof of Szemerédi's theorem. Geom. Funct. Anal.
11
465–588.

[8]
Graham, R. L., Rothschild, B. L. and Spencer, J. H. (1990) Ramsey Theory, second edition, Wiley.

[9]
Green, B. and Tao, T. (2009) New bounds for Szemerédi's theorem II: A new bound for *r*
_{4}(*N*). In Analytic Number Theory: Essays in Honour of Klaus Roth (Chen, W.
*et al.*, eds), Cambridge University Press, pp. 180–204.

[10]
Kostochka, A. V. and Kumbhat, M. (2009) Coloring uniform hypergraphs with few edges. Random Struct. Alg.
35
348–368.

[11]
Kostochka, A. V., Kumbhat, M. and Rödl, V. (2010) Coloring uniform hypergraphs with small edge degrees. In Fete of Combinatorics and Computer Science, Vol. 20 of Bolyai Society Mathematical Studies, Springer, pp. 213–238.

[12]
Kostochka, A. V. and Rödl, V. (2010) Constructions of sparse uniform hypergraphs with high chromatic number. Random Struct. Alg.
36
46–56.

[13]
Kozik, J. (2016) Multipass greedy coloring of simple uniform hypergraphs. Random Struct. Alg.
48
125–146.

[14]
Moser, L. (1960) On a theorem of van der Waerden. Canad. Math. Bull.
3
23–25.

[15]
O'Bryant, K. (2011) Sets of integers that do not contain long arithmetic progressions. Electron. J. Combin.
18
P59.

[16]
Pluhár, A. (2009) Greedy colorings of uniform hypergraphs. Random Struct. Alg.
35
216–221.

[17]
Radhakrishnan, J. and Srinivasan, A. (2000) Improved bounds and algorithms for hypergraph two-coloring. Random Struct. Alg.
16
4–32.

[18]
Sanders, T. (2011) On Roth's theorem on progressions. Ann. of Math.
174
619–636.

[19]
Schmidt, W. M. (1962) Two combinatorial theorems on arithmetic progressions. Duke Math. J.
29
129–140.

[20]
Shabanov, D. A. (2012) On *r*-chromatic hypergraphs. Discrete Math.
312
441–458.

[21]
Shabanov, D. A. (2012) Random coloring method in the combinatorial problem of Erdős and Lovász. Random Struct. Alg.
40
227–253.

[22]
Shabanov, D. A. (2011) Van der Waerden's function and colourings of hypergraphs. Izvestiya: Mathematics
75
1063–1091.

[23]
Spencer, J. H. (1981) Coloring *n*-sets red and blue. J. Combin. Theory Ser. A
30
112–113.

[24]
Szabó, Z. (1990) An application of Lovász' Local Lemma: A new lower bound for the van der Waerden number. Random Struct. Alg.
1
343–360.

[25]
van der Waerden, B. L. (1927) Beweis einer Baudetschen Vermutung. Nieuw Archief voor Wiskunde
15
212–216.