[1]
Boehnlein E. and Jiang T. (2012) Set families with a forbidden induced subposet.
Combin. Probab. Comput.
21
496–511.

[2]
Bukh B. (2009) Set families with a forbidden subposet. Electron. J. Combin.
16
R142.

[3]
Burcsi P. and Nagy D. T. (2013) The method of double chains for largest families with excluded subposet.
Electron. J. Graph Theory Appl.
1
40–49.

[4]
Carroll T. and Katona G. O. H. (2008) Bounds on maximal families of sets not containing three sets with *A* ∪ *B* ⊂ *C*, *A* ¬ ⊂ *B*.
Order
25
229–236.

[5]
Chen H. B. and Li W.-T. (2014) A note on the largest size of families of sets with a forbidden poset.
Order
31
137–142.

[6]
Erdős P. (1945) On a lemma of Littlewood and Offord.
Bull. Amer. Math. Soc.
51
898–902.

[7]
Fox J. (2013) Stanley–Wilf limits are typically exponential. arXiv:1310.8378

[8]
Füredi Z. and Hajnal P. (1992) Davenport–Schinzel theory of matrices.
Discrete Math.
103
233–251.

[9]
Geneson J. T. and Tian P. M. (2015) Extremal functions of forbidden multidimensional matrices. arXiv:1506.03874

[10]
Griggs J. R. and Li W.-T. (2016) Progress on poset-free families of subsets. In Recent Trends in Combinatorics (Beveridge A.
et al., eds), Springer, pp. 317–338.

[11]
Griggs J. R., Li W.-T. and Lu L. (2012) Diamond-free families.
J. Combin. Theory. Ser. A
119
310–322.

[12]
Griggs J. R. and Lu L. (2009) On families of subsets with a forbidden subposet.
Combin. Probab. Comput.
18
731–748.

[13]
Grósz D., Methuku A. and Tompkins C. (2014) An improvement of the general bound on the largest family of subsets avoiding a subposet. *Order*, pp. 1–13.

[14]
Grósz D., Methuku A. and Tompkins C. (2016) An upper bound on the size of diamond-free families of sets. *arXiv:1601.06332*

[15]
Katona G. O. H. (1972) A simple proof of the Erdős–Chao Ko–Rado theorem.
J. Combin. Theory. Ser. B
13
183–184.

[16]
Katona G. O. H. (2008) Forbidden intersection patterns in the families of subsets (introducing a method). In Horizons of Combinatorics (Győri E., Katona G. and Lovász L., eds), Springer, pp. 119–140.

[17]
Katona G. O. H. (2012) Personal communication.

[18]
Katona G. O. H. and Tarján T. G. (1983) Extremal problems with excluded subgraphs in the *n*-cube. In Graph Theory (Borowiecki M., Kennedy J. W. and Sysło M. M., eds), Springer, pp. 84–93.

[19]
Klazar M. and Marcus A. (2006) Extensions of the linear bound in the Füredi–Hajnal conjecture.
Adv. Appl. Math.
38
258–266.

[20]
Loomis H. L. and Whitney H. (1949) An inequality related to the isoperimetric inequality.
Bull. Amer. Math. Soc.
55
961–962.

[21]
Lu L. and Milans K. G. (2015) Set families with forbidden subposets.
Journal of Combinatorial Theory, Series A
136
126–142.

[22]
Marcus A. and Tardos G. (2004) Excluded permutation matrices and the Stanley–Wilf conjecture.
J. Combin. Theory. Ser. A
107
153–160.

[23]
Méroueh A. (2015) Lubell mass and induced partially ordered sets. *arXiv:1506.07056*

[24]
Patkós B. (2015) Induced and non-induced forbidden subposet problems. Electron. J. Combin.
22 P1.30.

[25]
Sperner E. (1928) Ein Satz über Untermegen einer endlichen Menge.
Math. Z.
27
544–548.

[26]
Tardos G. (2005) On 0–1 matrices and small excluded submatrices.
J. Combin. Theory. Ser. A
111
266–288.