[1]
Barrus M. D. (2016) On realization graphs of degree sequences.
Discrete Math.
339
2146–2152.

[2]
Barrus M. D. and Donovan E. (2015) Neighborhood degree lists of graphs. arXiv:1507.08212v1

[3]
Barrus M. D. and West D. B. (2012) The *A*
_{4}-structure of a graph.
J. Graph Theory
71
159–175.

[4]
Bassler K. E., Del Genio C. I., Erdős P. L., Miklós I. and Toroczkai Z. (2015) Exact sampling of graphs with prescribed degree correlations. New J. Phys.
17
083052

[5]
Bezáková I. (2008) Sampling binary contingency tables.
Comput. Sci. Eng.
10
26–31.

[6]
Bezáková I., Bhatnagar N. and Randall D. (2011) On the Diaconis–Gangolli Markov chain for sampling contingency tables with cell-bounded entries.
J. Combin. Optim.
22
457–468.

[7]
Bezáková I., Bhatnagar N. and Vigoda E. (2007) Sampling binary contingency tables with a greedy start.
Random Struct. Alg.
30
168–205.

[8]
Blitzstein J. and Diaconis P. (2011) A sequential importance sampling algorithm for generating random graphs with prescribed degrees.
Internet Math.
6
489–522.

[9]
Brualdi R. A. and Ryser H. J. (1992) Combinatorial Matrix Theory, Cambridge University Press.

[10]
Cheeger J. (1970) A lower bound for the smallest eigenvalue of the Laplacian. In Problems in Analysis (Gunning R. C., ed.), Princeton University Press, pp. 195–199.

[11]
Chen Y., Diaconis P., Holmes S. P. and Liu J. S. (2005) Sequential Monte Carlo methods for statistical analysis of tables. J. Amer. Statist. Assoc.
100
(469)
109–120.

[12]
Chvátal V. and Hammer P. L. (1977) Aggregation of inequalities in integer programming.
Ann. Discrete Math.
1
145–162.

[13]
Cooper C., Dyer M. and Greenhill C. (2007) Sampling regular graphs and a peer-to-peer network.
Comput. Probab. Comput.
16
557–593.

[14]
Cooper C., Dyer M. and Greenhill C. (2012) Corrigendum: Sampling regular graphs and a peer-to-peer network. arXiv:1203.6111v1

[15]
Cryan M., Dyer M., Goldberg L. A., Jerrum M. and Martin R. A. (2006) Rapidly mixing Markov chains for sampling contingency tables with a constant number of rows.
SIAM J. Comput.
36
247–278.

[16]
Cryan M., Dyer M. E. and Randall D. (2010) Approximately counting integral flows and cell-bounded contingency tables.
SIAM J. Comput.
39
2683–2703.

[17]
Czabarka É., Dutle A., Erdős P. L. and Miklós I. (2015) On realizations of a joint degree matrix.
Discrete Appl. Math.
181
283–288.

[18]
Del Genio C. I., Kim H., Toroczkai Z. and Bassler K. E. (2010) Efficient and exact sampling of simple graphs with given arbitrary degree sequence. PLOS ONE
5
e10012.

[19]
Diaconis P. and Gangolli A. (1995) Rectangular arrays with fixed margins. In Discrete Probability and Algorithms (Aldous D.
et al., eds), Springer, pp. 15–41.

[20]
Diaconis P. and Saloff-Coste L. (1993) Comparison theorems for reversible Markov chains.
Ann. Appl. Probab.
3
696–730.

[21]
Erdős P. L., Király Z. and Miklós I. (2013) On graphical degree sequences and realizations.
Combin. Probab. Comput.
22
366–383.

[22]
Erdős P. L., Kiss Z. S., Miklós I. and Soukup L. (2015) Approximate counting of graphical realizations. PLOS ONE
20
e0131300.

[23]
Erdős P. L., Miklós I. and Toroczkai Z. (2010) A simple Havel–Hakimi type algorithm to realize graphical degree sequences of directed graphs. Electron. J. Combin.
17
R66.

[24]
Erdős P. L., Miklós I. and Toroczkai Z. (2015) A decomposition based proof for fast mixing of a Markov chain over balanced realizations of a joint degree matrix.
SIAM J. Discrete Math.
29
481–499.

[25]
Feder T., Guetz A., Mihail M. and Saberi A. (2006) A local switch Markov chain on given degree graphs with application in connectivity of peer-to-peer networks. In *FOCS '06: 47th Annual IEEE Symposium on Foundations of Computer Science*, pp. 69–76.

[26]
Földes S. and Hammer P. L. Split graphs. In *Proc. Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing*, Vol. XIX of Congressus Numerantium, Utilitas Mathematica, pp. 311–315.

[27]
Greenhill C. (2011) A polynomial bound on the mixing time of a Markov chain for sampling regular directed graphs.
Electron. J. Combin.
16
557–593.

[28]
Greenhill C. (2015) The switch Markov chain for sampling irregular graphs. In *Proc. 26th ACM–SIAM Symposium on Discrete Algorithms*, pp. 1564–1572.

[29]
Gross E., Petrović S. and Stasi D. (2017) Goodness-of-fit for log-linear network models: Dynamic Markov bases using hypergraphs.
Ann. Inst. Statist. Math.
69
673–704.

[30]
Hammer P. L., Peled U. N. and Sun X. (1990) Difference graphs.
Discrete Appl. Math.
28
35–44.

[31]
Hammer P. L. and Simeone B. (1981) The splittance of a graph.
Combinatorica
1
275–284.

[32]
Kannan R., Tetali P. and Vempala S. (1999) Simple Markov-chain algorithms for generating bipartite graphs and tournaments.
Random Struct. Alg.
14
293–308.

[33]
Kim H., Del Genio C. I., Bassler K. E. and Toroczkai Z. (2012) Constructing and sampling directed graphs with given degree sequences. New J. Phys.
14
023012.

[34]
Kim H., Toroczkai Z., Erdős P. L., Miklós I. and Székely L. A. (2009) Degree-based graph construction. J. Phys. A: Math. Theor.
42
392001.

[35]
Kleitman D. J. and Wang D. L. (1973) Algorithms for constructing graphs and digraphs with given valences and factors.
Discrete Math.
6
79–88.

[36]
LaMar M. D. (2012) Splits digraphs.
Discrete Math.
312
1314–1325.

[37]
Levin D. A., Peres Y. and Wilmer E. L. (2008) Markov Chains and Mixing Times, AMS.

[38]
Madras R. and Randall D. (2002) Markov chain decomposition for convergence rate analysis.
Ann. Appl. Probab.
12
581–606.

[39]
Martin R. and Randall D. (2006) Disjoint decomposition of Markov chains and sampling circuits in Cayley graphs.
Combin. Probab. Comput.
15
411–448.

[40]
Miklós I., Erdős P. L. and Soukup L. (2013) Towards random uniform sampling of bipartite graphs with given degree sequence. Electron. J. Combin.
20
P16.

[42]
Petrović S. (2017) A survey of discrete methods in (algebraic) statistics for networks. In Algebraic and Geometric Methods in Discrete Mathematics (Harrington H., Omar M. and Wright M., eds), Vol. 685 of Contemporary Mathematics, AMS, pp. 260–281.

[43]
Randall D. (2006) Rapidly mixing Markov chains with applications in computer science and physics.
Comput. Sci. Eng.
8
30–41.

[44]
Rao A. R., Jana R. and Bandyopadhyay S. (1996) A Markov chain Monte Carlo method for generating random (0,1)-matrices with given marginals.
Sankhy=ā: Ind. J. Stat.
58
225–370.

[45]
Ryser H. J. (1957) Combinatorial properties of matrices of zeros and ones.
Canad. J. Math.
9
371–377.

[46]
Sinclair A. (1992) Improved bounds for mixing rates of Markov chains and multicommodity flow.
Combin. Probab. Comput.
1
351–370.

[47]
Slavković A., Zhu X. and Petrović S. (2015) Fibers of multi-way contingency tables given conditionals: Relation to marginals, cell bounds and Markov bases.
Ann. Inst. Stat. Math.
67
621–648.

[48]
Taylor R. (1981) Constrained switching in graphs. In Combinatorial Mathematics VIII: Proc. Eighth Australian Conference on Combinatorial Mathematics, Vol. 884 of Lecture Notes in Mathematics, Springer, pp. 314–336.

[49]
Tyshkevich R. (1980) The canonical decomposition of a graph (in Russian).
Doklady Akademii Nauk SSSR
24
677–679.

[50]
Tyshkevich R. (2000) Decomposition of graphical sequences and unigraphs.
Discrete Math.
220
201–238.

[51]
Tyshkevich R., Melnikov O. and Kotov V. (1981) On graphs and degree sequences (in Russian).
Kibernetika
6
5–8.