Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T19:48:30.832Z Has data issue: false hasContentIssue false

On mappings on the hypercube with small average stretch

Published online by Cambridge University Press:  18 October 2022

Lucas Boczkowski
Affiliation:
CNRS, IRIF Université Paris 7, France
Igor Shinkar*
Affiliation:
Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
*
*Corresponding author. Email: ishinkar@sfu.ca

Abstract

Let $A \subseteq \{0,1\}^n$ be a set of size $2^{n-1}$ , and let $\phi \,:\, \{0,1\}^{n-1} \to A$ be a bijection. We define the average stretch of $\phi$ as

\begin{equation*} {\sf avgStretch}(\phi ) = {\mathbb E}[{{\sf dist}}(\phi (x),\phi (x'))], \end{equation*}
where the expectation is taken over uniformly random $x,x' \in \{0,1\}^{n-1}$ that differ in exactly one coordinate.

In this paper, we continue the line of research studying mappings on the discrete hypercube with small average stretch. We prove the following results.

  • For any set $A \subseteq \{0,1\}^n$ of density $1/2$ there exists a bijection $\phi _A \,:\, \{0,1\}^{n-1} \to A$ such that ${\sf avgStretch}(\phi _A) = O\left(\sqrt{n}\right)$ .

  • For $n = 3^k$ let ${A_{\textsf{rec-maj}}} = \{x \in \{0,1\}^n \,:\,{\textsf{rec-maj}}(x) = 1\}$ , where ${\textsf{rec-maj}} \,:\, \{0,1\}^n \to \{0,1\}$ is the function recursive majority of 3’s. There exists a bijection $\phi _{{\textsf{rec-maj}}} \,:\, \{0,1\}^{n-1} \to{A_{\textsf{rec-maj}}}$ such that ${\sf avgStretch}(\phi _{{\textsf{rec-maj}}}) = O(1)$ .

  • Let ${A_{{\sf tribes}}} = \{x \in \{0,1\}^n \,:\,{\sf tribes}(x) = 1\}$ . There exists a bijection $\phi _{{\sf tribes}} \,:\, \{0,1\}^{n-1} \to{A_{{\sf tribes}}}$ such that ${\sf avgStretch}(\phi _{{\sf tribes}}) = O(\!\log (n))$ .

These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).

MSC classification

Type
Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, O. and Benjamini, I. (2007) A phase transition for the metric distortion of percolation on the hypercube. Combinatorica 27(6) 645658.CrossRefGoogle Scholar
Benjamini, I., Cohen, G. and Shinkar, I. (2014) Bi-Lipschitz bijection between the boolean cube and the Hamming ball, FOCS, 8189.Google Scholar
Birkhoff, G. (1946) Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A 5 147151.Google Scholar
Boppana, R. (1997) The average sensitivity of bounded-depth circuits. Inform. Process. Lett. 63(5) 257261.Google Scholar
Goldreich, O., Goldwasser, S. and Nussboim, A. (2010) On the implementation of huge random objects. SIAM J. Comput. 39(7) 27612822.CrossRefGoogle Scholar
Graham, R. L. (1988) Isometric embeddings of graphs. Selected Topics Graph Theory 3 133150.Google Scholar
Håstad, J. (1986) Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth annual ACM Symposium on Theory of Computing . ACM. 620.CrossRefGoogle Scholar
Håstad, J., Leighton, T. and Newman, M. (1987) Reconfiguring a hypercube in the presence of faults. In Proceedings of the nineteenth annual ACM Symposium on Theory of Computing , 274284.CrossRefGoogle Scholar
Johnston, T. and Scott, A. (2021) Lipschitz bijections between boolean functions. Comb. Probab. Comput. 30(4) 513525.CrossRefGoogle Scholar
Linial, N. (2002) Finite metric spaces - combinatorics, geometry and algorithms. In Proceedings of the International Congress of Mathematicians III , 573586.Google Scholar
Linial, N., Mansour, Y. and Nisan, N. (1993) Constant depth circuits, fourier transform, and learnability. J. ACM 40(3) 607620.CrossRefGoogle Scholar
Lovett, S. and Viola, E. (2012) Bounded-depth circuits cannot sample good codes. Comput. Complex. 21(2) 245266.CrossRefGoogle Scholar
O’Donnell, R. (2014) Analysis of Boolean Functions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Raginsky, M. and Sason, I. (2013) Concentration of measure inequalities in information theory, communications, and coding. Found. Trends Commun. Inform. Theory 10(1-2) 1246.CrossRefGoogle Scholar
Rao, S. and Shinkar, I. (2018) On Lipschitz bijections between boolean functions. Comb. Probab. Comput. 27(3) 411426.CrossRefGoogle Scholar
Talagrand, M. (1995) Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. l’Inst. Hautes Études Sci. 81(1) 73205.CrossRefGoogle Scholar
Viola, E. (2012) The complexity of distributions. SIAM J. Comput. 41(1) 191218.CrossRefGoogle Scholar
von Neumann, J. (1953) A certain zero-sum two-person game equivalent to the optimal assignment problem. Contrib. Theory Games II; Ann. Math. Stud. 28 512.Google Scholar