[1]
Alon, N., Duke, R. A., Lefmann, H., Rödl, V. and Yuster, R. (1994) The algorithmic aspects of the regularity lemma. J. Algorithms
16
80–109.

[2]
Alon, N. and Naor, A. (2006) Approximating the cut-norm via Grothendieck's inequality. SIAM J. Comput.
35
787–803.

[3]
Alon, N. and Spencer, J. H. (2008) The Probabilistic Method, third edition, Wiley.

[4]
Borgs, C., Chayes, J. T., Lovász, L., Sós, V. T. and Vesztergombi, K. (2008) Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing. Adv. Math.
219
1801–1851.

[5]
Conlon, D. and Fox, J. (2012) Bounds for graph regularity and removal lemmas. Geom. Funct. Anal.
22
1191–1256.

[6]
Cooper, J. N. (2006) A permutation regularity lemma. Electron. J. Combin.
13
22.

[7]
Coppersmith, D. and Winograd, S. (1990) Matrix multiplication via arithmetic progressions. J. Symbol. Comput.
9
251–280.

[8]
Dellamonica, D., Kalyanasundaram, S., Martin, D., Rödl, V. and Shapira, A. (2012) A deterministic algorithm for the Frieze–Kannan regularity lemma. SIAM J. Discrete Math.
26
15–29.

[9]
Dellamonica, D. Jr, Kalyanasundaram, S., Martin, D. M., Rödl, V. and Shapira, A. (2015) An optimal algorithm for finding Frieze–Kannan regular partitions. Combin. Probab. Comput.
24
407–437.

[10]
Duke, R. A., Lefmann, H. and Rödl, V. (1995) A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput.
24
598–620.

[11]
Fischer, E., Matsliah, A. and Shapira, A. (2010) Approximate hypergraph partitioning and applications. SIAM J. Comput.
39
3155–3185.

[12]
Fox, J. and Lovász, L. M. A tight lower bound for Szemerédi's regularity lemma. *Combinatorica*, to appear.

[13]
Frieze, A. and Kannan, R. (1999) Quick approximation to matrices and applications. Combinatorica
19
175–220.

[14]
Frieze, A. and Kannan, R. (1999) A simple algorithm for constructing Szemerédi's regularity partition. Electron. J. Combin.
6
17.

[15]
Gowers, W. T. (1997) Lower bounds of tower type for Szemerédi's uniformity lemma. Geom. Funct. Anal.
7
322–337.

[16]
Håstad, J. (1999) Clique is hard to approximate within *n*
^{1-ε}
. Acta Mathematica
182
105–142.

[17]
Hoppen, C., Kohayakawa, Y. and Sampaio, R. M. (2012) A note on permutation regularity. Discrete Appl. Math.
160
2716–2727.

[18]
Kohayakawa, Y., Rödl, V. and Thoma, L. (2003) An optimal algorithm for checking regularity. SIAM J. Comput.
32
1210–1235.

[19]
Komlós, J. and Simonovits, M. (1996) Szemerédi's regularity lemma and its applications in graph theory. In Combinatorics: Paul Erdős is Eighty, Vol. 2, János Bolyai Mathematical Society, pp. 295–352.

[20]
Le Gall, F. (2014) Powers of tensors and fast matrix multiplication. In ISSAC '14: Proc. 39th International Symposium on Symbolic and Algebraic Computation, ACM, pp. 296–303.

[21]
Lovász, L. (2012) Large Networks and Graph Limits, *Vol. 60* of American Mathematical Society Colloquium Publications, AMS.

[22]
Lovász, L. and Szegedy, B. (2007) Szemerédi's lemma for the analyst. Geom. Funct. Anal.
17
252–270.

[23]
Moshkovitz, G. and Shapira, A. (2016) A short proof of Gowers' lower bound for the regularity lemma. Combinatorica
36
187–194.

[24]
Szemerédi, E. (1975) On sets of integers containing no *k* elements in arithmetic progression. In Proc. International Congress of Mathematicians 1974, Vol. 2, Canadian Mathematical Congress, pp. 503–505.

[25]
Szemerédi, E. (1978) Regular partitions of graphs. In Problèmes Combinatoires et Théorie des Graphes, *Vol. 260* of Colloq. Internat. CNRS, CNRS, pp. 399–401.

[26]
Tao, T. (2010) An Epsilon of Room, II, AMS.

[27]
Zuckerman, D. (2007) Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput.
3
103–128.