[1]
Achlioptas, D. (2000) Setting 2 variables at a time yields a new lower bound for random 3-SAT. In *Proc. 32nd Annual ACM Symposium on Theory of Computing: STOC'00*, ACM, pp. 28–37.

[2]
Alon, N., Kim, J. H. and Spencer, J. (1997) Nearly perfect matchings in regular simple hypergraphs. Israel J. Math.
100
171–187.

[3]
Azuma, K. (1967) Weighted sums of certain dependent random variables. Tôhoku Math. J.
(2)
19
357–367.

[4]
Bapst, V., Coja-Oghlan, A., Hetterich, S., Rassmann, F. and Vilenchik, D. The condensation phase transition in random graph coloring. *Comm. Math. Phys.*, to appear (Proceedings version appeared in RANDOM 2014). arXiv:1404.5513.

[5]
Bohman, T. (2009) The triangle-free process. Adv. Math.
221
1653–1677.

[6]
Bohman, T., Frieze, A. and Lubetzky, E. (2015) Random triangle removal. Adv. Math.
280
379–438.

[7]
Bohman, T. and Keevash, P. (2010) The early evolution of the *H*-free process. Invent. Math.
181
291–336.

[8]
Bollobás, B. (1988) The chromatic number of random graphs. Combinatorica
8
49–55.

[9]
Bollobás, B. (2012) Personal communication.

[10]
Bollobás, B. and Riordan, O. (2015) An old approach to the giant component problem. J. Combin. Theory Ser. B
113
236–260.

[11]
Bollobás, B. and Brightwell, G. (1992) The height of a random partial order: Concentration of measure. Ann. Appl. Probab.
2
1009–1018.

[12]
Bollobás, B. and Riordan, O. (2009) Random graphs and branching processes. In *Handbook of Large-Scale Random Networks*, Vol. 18 of *Bolyai Society Mathematical Studies*, pp. 15–115.

[13]
Borgs, C., Chayes, J. T., Mertens, S. and Pittel, B. (2004) Phase diagram for the constrained integer partitioning problem. Random Struct. Alg.
24
315–380.

[14]
Bushaw, N., Collares Neto, M., Morris, R. and Smith, P. (2015) The sharp threshold for maximum-size sum-free subsets in even-order abelian groups. Combin. Probab. Comput.
24
609–640.

[15]
Chalker, T. K., Godbole, A. P., Hitczenko, P., Radcliff, J. and Ruehr, O. G. (1999) On the size of a random sphere of influence graph. Adv. Appl. Probab.
31
596–609.

[16]
Chung, F. and Lu, L. (2006) Concentration inequalities and martingale inequalities: A survey. Internet Math.
3
79–127.

[17]
Dembo, A. and Zeitouni, O. (1998) Large Deviations Techniques and Applications, Springer.

[18]
Dubhashi, D. P. and Panconesi, A. (2009) Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press.

[19]
Erdős, P., Suen, S. and Winkler, P. (1995) On the size of a random maximal graph. Random Struct. Alg.
6
309–318.

[20]
Freedman, D. A. (1975) On tail probabilities for martingales. Ann. Probab.
3
100–118.

[21]
de Graaf, M. and Manthey, B. (2014) Probabilistic analysis of power assignments. In Mathematical Foundations of Computer Science 2014, Vol. 8635 of *Lecture Notes in Computer Science*, Springer, pp. 201–212.

[22]
Grable, D. A. (1998) A large deviation inequality for functions of independent, multi-way choices. Combin. Probab. Comput.
7
57–63.

[23]
Harris, T. E. (1960) A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc.
56
13–20.

[24]
Hoeffding, W. (1963) Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc.
58
13–30.

[25]
Janson, S. (1990) Poisson approximation for large deviations. Random Struct. Alg.
1
221–229.

[26]
Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience.

[27]
Janson, S. and Ruciński, A. (2004) The deletion method for upper tail estimates. Combinatorica
24
615–640.

[28]
Janson, S. and Warnke, L. The lower tail: Poisson approximation revisited. *Random Struct. Alg.*, to appear. arXiv:1406.1248.

[29]
Kim, J. H. (1995) On Brooks' theorem for sparse graphs. Combin. Probab. Comput.
4
97–132.

[30]
Kim, J. H. and Vu, V. H. (2000) Concentration of multivariate polynomials and its applications. Combinatorica
20
417–434.

[31]
Kim, J. H. and Vu, V. H. (2004) Divide and conquer martingales and the number of triangles in a random graph. Random Struct. Alg.
24
166–174.

[32]
Krivelevich, M., Lubetzky, E. and Sudakov, B. (2013) Longest cycles in sparse random digraphs. Random Struct. Alg.
43
1–15.

[33]
Makai, T. (2015) The reverse *H*-free process for strictly 2-balanced graphs. J. Graph Theory
79
125–144.

[34]
McDiarmid, C. (1989) On the method of bounded differences. In Surveys in Combinatorics, Vol. 141 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, pp. 48–188.

[35]
McDiarmid, C. (1998) Concentration. In Probabilistic Methods for Algorithmic Discrete Mathematics, Vol. 16 of *Algorithms and Combinatorics*, Springer, pp. 195–248.

[36]
McKay, B. and Skerman, F. (2013) Degree sequences of random digraphs and bipartite graphs. arXiv:1302.2446.

[37]
Milman, V. D. and Schechtman, G. (1986) Asymptotic Theory of Finite-Dimensional Normed Spaces, Vol. 1200 of *Lecture Notes in Mathematics*, Springer.

[38]
Osthus, D. and Taraz, A. (2001) Random maximal *H*-free graphs. Random Struct. Alg.
18
61–82.

[39]
Riordan, O. and Warnke, L. (2015) The Janson inequalities for general up-sets. Random Struct. Alg.
46
391–395.

[40]
Riordan, O. and Warnke, L. (2015) The evolution of subcritical Achlioptas processes. Random Struct. Alg.
47
174–203.

[41]
Rödl, V. and Thoma, L. (1996) Asymptotic packing and the random greedy algorithm. Random Struct. Alg.
8
161–177.

[42]
Schudy, W. and Sviridenko, M. (2011) Bernstein-like concentration and moment inequalities for polynomials of independent random variables: Multilinear case. arXiv:1109.5193.

[43]
Schudy, W. and Sviridenko, M. (2012) Concentration and moment inequalities for polynomials of independent random variables. In *Proc. 23rd Annual ACM–SIAM Symposium on Discrete Algorithms: SODA'12*, SIAM, pp. 437–446.

[44]
Shamir, E. and Spencer, J. (1987) Sharp concentration of the chromatic number on random graphs *G*_{n,p}
. Combinatorica
7
121–129.

[45]
Spencer, J. (1990) Counting extensions. J. Combin. Theory Ser. A
55
247–255.

[46]
Spencer, J. (1995) Asymptotic packing via a branching process. Random Struct. Alg.
7
167–172.

[47]
Steiger, W. L. (1969) A best possible Kolmogoroff-type inequality for martingales and a characteristic property. Ann. Math. Statist.
40
764–769.

[48]
Talagrand, M. (1996) A new look at independence. Ann. Probab.
24
1–34.

[49]
Vu, V. H. (2000) On the concentration of multivariate polynomials with small expectation. Random Struct. Alg.
16
344–363.

[50]
Vu, V. H. (2002) Concentration of non-Lipschitz functions and applications. Random Struct. Alg.
20
262–316.

[51]
Warnke, L. (2014) The *C*_{ℓ}
-free process. Random Struct. Alg.
44
490–526.

[52]
Warnke, L. (2014) When does the *K*
_{4}-free process stop?
Random Struct. Alg.
44
355–397.

[53]
Wormald, N. C. (1999) Models of random regular graphs. In Surveys in Combinatorics, Vol. 267 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, pp. 239–298.