[1]
Albert, M. H., Atkinson, M. D. and Brignall, R. (2011) The enumeration of permutations avoiding 2143 and 4231.
Pure Math. Appl.
22
87–98.

[2]
Albert, M. H., Atkinson, M. D. and Brignall, R. (2012) The enumeration of three pattern classes using monotone grid classes. Electron. J. Combin.
19
20.

[3]
Aldous, D. (1991) The continuum random tree II: An overview. In Stochastic Analysis: Durham 1990, Vol. 167 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, pp. 23–70.

[4]
Aldous, D. (1993) The continuum random tree III.
Ann. Probab.
21
248–289.

[5]
Biane, P., Pitman, J. and Yor, M. (2001) Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Amer. Math. Soc. (N.S.) 38
435–465.

[6]
Billey, S. C., Jockusch, W. and Stanley, R. P. (1993) Some combinatorial properties of Schubert polynomials.
J. Algebraic Combin.
2
345–374.

[7]
Billingsley, P. (1968) Convergence of Probability Measures, Wiley.

[8]
Bóna, M. (2004) Combinatorics of Permutations, Chapman & Hall/CRC.

[9]
Bóna, M. (2007) The copies of any permutation pattern are asymptotically normal. arXiv:0712.2792

[10]
Bóna, M. (2010) The absence of a pattern and the occurrences of another.
Discrete Math. Theor. Comput. Sci.
12
89–102.

[11]
Bóna, M. (2010) On three different notions of monotone subsequences. In Permutation Patterns, Vol. 376 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, pp. 89–114.

[12]
Bóna, M. (2012) Surprising symmetries in objects counted by Catalan numbers. Electron. J. Combin.
19
62.

[13]
Bousquet-Mélou, M. and Janson, S. (2006) The density of the ISE and local limit laws for embedded trees.
Ann. Appl. Probab.
16
1597–1632.

[14]
Cheng, S.-E., Eu, S.-P. and Fu, T.-S. (2007) Area of Catalan paths on a checkerboard.
European J. Combin.
28
1331–1344.

[15]
Chow, T. and West, J. (1999) Forbidden subsequences and Chebyshev polynomials.
Discrete Math.
204
119–128.

[17]
Drmota, M. (2009) Random Trees, Springer.

[18]
Durrett, R. T., Iglehart, D. L. and Miller, D. R. (1977) Weak convergence to Brownian meander and Brownian excursion.
Ann. Probab.
5
117–129.

[19]
Fill, J. A. and Janson, S. (2009) Precise logarithmic asymptotics for the right tails of some limit random variables for random trees.
Ann. Combin.
12
403–416.

[20]
Flajolet, P. and Sedgewick, R. (2009) Analytic Combinatorics, Cambridge University Press.

[21]
Gut, A. (2013) Probability: A Graduate Course, second edition, Springer.

[22]
Homberger, C. (2012) Expected patterns in permutation classes. Electron. J. Combin.
19 43.

[23]
Janson, S. (2003) The Wiener index of simply generated random trees.
Random Struct. Alg.
22
337–358.

[24]
Janson, S. (2007) Brownian excursion area, Wright's constants in graph enumeration, and other Brownian areas.
Probab. Surv.
4
80–145.

[25]
Janson, S. Patterns in random permutations avoiding the pattern 132. (Earlier version of the present paper.) arXiv:1401.5679v1

[26]
Janson, S., Nakamura, B. and Zeilberger, D. (2015) On the asymptotic statistics of the number of occurrences of multiple permutation patterns.
J. Combin.
6
117–143.

[27]
Kallenberg, O. (2002) Foundations of Modern Probability, second edition, Springer.

[28]
Knuth, D. E. (1997) The Art of Computer Programming, Vol. 1: *Fundamental Algorithms*, third edition, Addison-Wesley.

[29]
Krattenthaler, C. (2001) Permutations with restricted patterns and Dyck paths.
Adv. Appl. Math.
27
510–530.

[30]
Louchard, G. (1984) The Brownian excursion area: A numerical analysis. Comput. Math. Appl.
10
413–417. Erratum: *Comput. Math. Appl.* A **12** (1986) 375.

[31]
Mansour, T. and Vainshtein, A. (2000) Restricted permutations, continued fractions, and Chebyshev polynomials. Electron. J. Combin.
7 R17.

[32]
Mansour, T. and Vainshtein, A. (2001) Restricted 132-avoiding permutations.
Adv. Appl. Math.
26
258–269.

[33]
Mansour, T. and Vainshtein, A. (2001/02) Restricted permutations and Chebyshev polynomials. Sém. Lothar. Combin.
47 B47c.

[34]
Marckert, J.-F. (2004) The rotation correspondence is asymptotically a dilatation.
Random Struct. Alg.
24
118–132.

[35]
Marckert, J.-F. and Mokkadem, A. (2003) The depth first processes of Galton–Watson trees converge to the same Brownian excursion.
Ann. Probab.
31
1655–1678.

[36]
Nguyen The, M. (2004) Area and inertial moment of Dyck paths.
Combin. Probab. Comput.
13
697–716.

[37]
Revuz, D. and Yor, M. (1999) Continuous Martingales and Brownian Motion, third edition, Springer.

[38]
Richard, C. (2009) On *q*-functional equations and excursion moments.
Discrete Math.
309
207–230.

[39]
Robertson, A., Wilf, H. S. and Zeilberger, D. (1999) Permutation patterns and continued fractions. Electron. J. Combin.
6 R38.

[40]
Rudolph, K. (2013) Pattern popularity in 132-avoiding permutations. Electron. J. Combin.
20
8.

[41]
Simion, R. and Schmidt, F. W. (1985) Restricted permutations.
European J. Combin.
6
383–406.

[42]
Stanley, R. P. (1999) Enumerative Combinatorics, Vol. 2, Cambridge University Press.

[43]
West, J. (1996) Generating trees and forbidden subsequences.
Discrete Math.
157
363–374.