[1] Aldous, D. J. (1985) Exchangeability and related topics. In *École d'Été de Probabilités de Saint-Flour XIII, 1983*, Vol. 1117 of Lecture Notes in Mathematics, Springer, pp. 1–198.

[2] Athreya, K. B. (1969) On a characteristic property of Polya's urn. Studia Sci. Math. Hungar. 4 31–35.

[3] Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286 (5439), 509–512.

[4] Bergeron, F., Flajolet, P. and Salvy, B. (1992) Varieties of increasing trees. In CAAP '92: 17th Colloquium on Trees in Algebra and Programming, Vol. 581 of Lecture Notes in Computer Science, Springer, pp. 24–48.

[5] Bertoin, J. (2006) Random Fragmentation and Coagulation Processes, Cambridge University Press.

[6] Biggins, J. D. (1976) The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8 446–459.

[7] Biggins, J. D. (1977) Chernoff's theorem in the branching random walk. J. Appl. Probab. 14 630–636.

[8] Broutin, N. and Devroye, L. (2006) Large deviations for the weighted height of an extended class of trees. Algorithmica 46 271–297.

[9] Broutin, N., Devroye, L., McLeish, E. and de la Salle, M. (2008) The height of increasing trees. Random Struct. Alg. 32 494–518.

[10] Broutin, N. and Holmgren, C. (2012) The total path length of split trees. Ann. Appl. Probab. 22 1745–1777.

[11] Devroye, L. (1999) Universal limit laws for depths in random trees. SIAM J. Comput. 28 409–432.

[12] Drmota, M. (2009) Random Trees, Springer.

[13] Eggenberger, F. and Polya, G. (1923) Über die Statistik verketteter Vorgänge. Zeitschrift Angew. Math. Mech. 3 279–289.

[15] Holmgren, C. (2012) Novel characteristic of split trees by use of renewal theory. Electron. J. Probab. 17 # 5.

[16] Holmgren, C. and Janson, S. (2017) Fringe trees, Crump–Mode–Jagers branching processes and *m*-ary search trees. Probab. Surveys 14 53–154.

[17] Janson, S. (2003) The Wiener index of simply generated random trees. Random Struct. Alg. 22 337–358.

[18] Janson, S. (2004) Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110 177–245.

[19] Jiřina, M. (1958) Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 292–313.

[20] Johnson, N. L. and Kotz, S. (1977) Urn Models and Their Application: An Approach to Modern Discrete Probability Theory, Wiley.

[21] Kallenberg, O. (2002) Foundations of Modern Probability, second edition, Springer.

[22] Kingman, J. F. C. (1978) The representation of partition structures. J. London Math. Soc. (2) 18 374–380.

[23] Kingman, J. F. C. (1982) The coalescent. Stochastic Process. Appl. 13 235–248.

[24] Markov, A. A. (1917) Sur quelques formules limites du calcul des probabilités (Russian). Bulletin de l'Académie Impériale des Sciences, Petrograd 11 177–186.

[25] Neininger, R. (2002) The Wiener index of random trees. Combin. Probab. Comput. 11 587–597.

[26] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., eds (2010) NIST Handbook of Mathematical Functions, Cambridge University Press. Also available as *NIST Digital Library of Mathematical Functions*, http://dlmf.nist.gov/ [27] Panholzer, A. and Prodinger, H. (2007) Level of nodes in increasing trees revisited. Random Struct. Alg. 31 203–226.

[28] Pitman, J. (2006) *Combinatorial Stochastic Processes, École d'Été de Probabilités de Saint-Flour XXXII, 2002*, Vol. 1875 of Lecture Notes in Mathematics, Springer.

[29] Pittel, B. (1994) Note on the heights of random recursive trees and random *m*-ary search trees. Random Struct. Alg. 5 337–347.

[30] Pólya, G. (1930) Sur quelques points de la théorie des probabilités. Ann. Inst. Poincaré 1 117–161.

[31] Szymański, J. (1987) On a nonuniform random recursive tree. Ann. Discrete Math. 33 297–306.