Skip to main content
×
×
Home

Random Recursive Trees and Preferential Attachment Trees are Random Split Trees

  • SVANTE JANSON (a1)
Abstract

We consider linear preferential attachment trees, and show that they can be regarded as random split trees in the sense of Devroye (1999), although with infinite potential branching. In particular, this applies to the random recursive tree and the standard preferential attachment tree. An application is given to the sum over all pairs of nodes of the common number of ancestors.

Copyright
References
Hide All
[1] Aldous, D. J. (1985) Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII, 1983, Vol. 1117 of Lecture Notes in Mathematics, Springer, pp. 1–198.
[2] Athreya, K. B. (1969) On a characteristic property of Polya's urn. Studia Sci. Math. Hungar. 4 3135.
[3] Barabási, A.-L. and Albert, R. (1999) Emergence of scaling in random networks. Science 286 (5439), 509512.
[4] Bergeron, F., Flajolet, P. and Salvy, B. (1992) Varieties of increasing trees. In CAAP '92: 17th Colloquium on Trees in Algebra and Programming, Vol. 581 of Lecture Notes in Computer Science, Springer, pp. 2448.
[5] Bertoin, J. (2006) Random Fragmentation and Coagulation Processes, Cambridge University Press.
[6] Biggins, J. D. (1976) The first- and last-birth problems for a multitype age-dependent branching process. Adv. Appl. Probab. 8 446459.
[7] Biggins, J. D. (1977) Chernoff's theorem in the branching random walk. J. Appl. Probab. 14 630636.
[8] Broutin, N. and Devroye, L. (2006) Large deviations for the weighted height of an extended class of trees. Algorithmica 46 271297.
[9] Broutin, N., Devroye, L., McLeish, E. and de la Salle, M. (2008) The height of increasing trees. Random Struct. Alg. 32 494518.
[10] Broutin, N. and Holmgren, C. (2012) The total path length of split trees. Ann. Appl. Probab. 22 17451777.
[11] Devroye, L. (1999) Universal limit laws for depths in random trees. SIAM J. Comput. 28 409432.
[12] Drmota, M. (2009) Random Trees, Springer.
[13] Eggenberger, F. and Polya, G. (1923) Über die Statistik verketteter Vorgänge. Zeitschrift Angew. Math. Mech. 3 279289.
[14] Hoeffding, W. (1961) The strong law of large numbers for U-statistics. Institute of Statistics, University of North Carolina, Mimeograph series 302. https://repository.lib.ncsu.edu/handle/1840.4/2128
[15] Holmgren, C. (2012) Novel characteristic of split trees by use of renewal theory. Electron. J. Probab. 17 # 5.
[16] Holmgren, C. and Janson, S. (2017) Fringe trees, Crump–Mode–Jagers branching processes and m-ary search trees. Probab. Surveys 14 53154.
[17] Janson, S. (2003) The Wiener index of simply generated random trees. Random Struct. Alg. 22 337358.
[18] Janson, S. (2004) Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110 177245.
[19] Jiřina, M. (1958) Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 292313.
[20] Johnson, N. L. and Kotz, S. (1977) Urn Models and Their Application: An Approach to Modern Discrete Probability Theory, Wiley.
[21] Kallenberg, O. (2002) Foundations of Modern Probability, second edition, Springer.
[22] Kingman, J. F. C. (1978) The representation of partition structures. J. London Math. Soc. (2) 18 374380.
[23] Kingman, J. F. C. (1982) The coalescent. Stochastic Process. Appl. 13 235248.
[24] Markov, A. A. (1917) Sur quelques formules limites du calcul des probabilités (Russian). Bulletin de l'Académie Impériale des Sciences, Petrograd 11 177186.
[25] Neininger, R. (2002) The Wiener index of random trees. Combin. Probab. Comput. 11 587597.
[26] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W., eds (2010) NIST Handbook of Mathematical Functions, Cambridge University Press. Also available as NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/
[27] Panholzer, A. and Prodinger, H. (2007) Level of nodes in increasing trees revisited. Random Struct. Alg. 31 203226.
[28] Pitman, J. (2006) Combinatorial Stochastic Processes, École d'Été de Probabilités de Saint-Flour XXXII, 2002, Vol. 1875 of Lecture Notes in Mathematics, Springer.
[29] Pittel, B. (1994) Note on the heights of random recursive trees and random m-ary search trees. Random Struct. Alg. 5 337347.
[30] Pólya, G. (1930) Sur quelques points de la théorie des probabilités. Ann. Inst. Poincaré 1 117161.
[31] Szymański, J. (1987) On a nonuniform random recursive tree. Ann. Discrete Math. 33 297306.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed