[1]
Ajtai, M., Chvátal, V., Newborn, M. M. and Szemerédi, E. (1982) Crossing-free subgraphs. In Theory and Practice of Combinatorics, Vol. 60 of North-Holland Mathematics Studies, North-Holland, pp. 9–12.

[2]
Alon, N. and Spencer, J. H. (2008) The Probabilistic Method, third edition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley.

[3]
Arocha, J. L., Bárány, I., Bracho, J., Fabila, R. and Montejano, L. (2009) Very colorful theorems. Discrete Comput. Geom.
42
142–154.

[4]
Asada, M., Chen, R., Frick, F., Huang, F., Polevy, M., Stoner, D., Tsang, L. H. and Wellner, Z. (2016) On Reay's relaxed Tverberg conjecture and generalizations of Conway's thrackle conjecture. arXiv:1608.04279

[5]
Bárány, I. (1982) A generalization of Carathéodory's theorem. Discrete Math.
40
141–152.

[6]
Bárány, I. (2015) Tensors, colours, octahedra. In Geometry, Structure and Randomness in Combinatorics (Matoušek, J.
et al., eds), Edizione della Normale, pp. 1–17.

[7]
Bárány, I. Personal communication.

[8]
Bárány, I. and Larman, D. G. (1992) A colored version of Tverberg's theorem. J. London Math. Soc.
s2-45 314–320.

[9]
Bárány, I. and Onn, S. (1997) Colourful linear programming and its relatives. Math. Oper. Res.
22
550–567.

[10]
Blagojević, P. V. M., Frick, F. and Ziegler, G. M. (2014) Tverberg plus constraints. Bull. London Math. Soc.
46
953–967.

[11]
Blagojević, P. V. M., Matschke, B. and Ziegler, G. M. (2011) Optimal bounds for a colorful Tverberg–Vrećica type problem. Adv. Math.
226
5198–5215.

[12]
Blagojević, P. V. M., Matschke, B. and Ziegler, G. M. (2015) Optimal bounds for the colored Tverberg problem. J. Eur. Math. Soc.
17
739–754.

[13]
Chazelle, B. and Friedman, J. (1990) A deterministic view of random sampling and its use in geometry. Combinatorica
10
229–249.

[14]
Clarkson, K. L. (1987) New applications of random sampling in computational geometry. Discrete Comput. Geom.
2
195–222.

[15]
Clarkson, K. L., Eppstein, D., Miller, G. L., Sturtivant, C. and Teng, S.-H. (1996) Approximating center points with iterative Radon points. Internat. J. Comput. Geom. Appl.
6
357–377.

[16]
Forge, D., Las Vergnas, M. and Schuchert, P. (2001) 10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope. Europ. J. Combin.
22
705–708.

[17]
García-Colín, N. (2007) Applying Tverberg type theorems to geometric problems. PhD thesis, University College London.

[18]
García-Colín, N. and Larman, D. (2015) Projective equivalences of *k*-neighbourly polytopes. Graphs Combin.
31
1403–1422.

[19]
García-Colín, N., Raggi, M. and Roldán-Pensado, E. (2017) A note on the tolerant Tverberg theorem. Discrete Comput. Geom.
58, no. 3, 746–754.

[20]
Haussler, D. and Welzl, E. (1987) ϵ-nets and simplex range queries. Discrete Comput. Geom.
2
127–151.

[21]
Holmsen, A. F. (2016) The intersection of a matroid and an oriented matroid. Adv. Math.
290
1–14.

[22]
Holmsen, A. F., Pach, J. and Tverberg, H. (2008) Points surrounding the origin. Combinatorica
28
633–644.

[23]
Larman, D. G. (1972) On sets projectively equivalent to the vertices of a convex polytope. Bull. London Math. Soc.
4
6–12.

[24]
Liu, R. Y., Serfling, R. J. and Souvaine, D. L. (2006) Data Depth: Robust Multivariate Analysis, Computational Geometry, and Applications, Vol. 72 of DIMAC Series in Discrete Mathematics and Theoretical Computer Science, AMS.

[25]
Matoušek, J. (2002) Lectures on Discrete Geometry, Vol. 212 of Graduate Texts in Mathematics, Springer.

[26]
Miller, G. L. and Sheehy, D. R. (2009) Approximate center points with proofs. In SCG '09: Twenty-Fifth Annual Symposium on Computational Geometry, ACM, pp. 153–158.

[27]
Montejano, L. and Oliveros, D. (2011) Tolerance in Helly-type theorems. Discrete Comput. Geom.
45
348–357.

[28]
Mulzer, W. and Stein, Y. (2013) Algorithms for tolerated Tverberg partitions. In ISAAC 2013: International Symposium on Algorithms and Computation, Springer, pp. 295–305.

[29]
Perles, M. A. and Sigron, M. (2016) Some variations on Tverberg's theorem. Israel J. Math.
216
957–972.

[30]
Reay, J. R. (1979) Several generalizations of Tverberg's theorem. Israel J. Math.
34
238–244.

[31]
Rolnick, D. and Soberón, P. (2016) Algorithms for Tverberg's theorem via centerpoint theorems. arXiv:1601.03083v2

[32]
Sarkaria, K. S. (1992) Tverberg's theorem via number fields. Israel J. Math.
79
317–320.

[33]
Soberón, P. (2015) Equal coefficients and tolerance in coloured Tverberg partitions. Combinatorica
35
235–252.

[34]
Soberón, P. and Strausz, R. (2012) A generalisation of Tverberg's theorem. Discrete Comput. Geom.
47
455–460.

[35]
Székely, L. A. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput.
6
353–358.

[36]
Tukey, J. W. (1975) Mathematics and the picturing of data. In *Proceedings of the International Congress of Mathematicians*, Vol. 2, Canadian Mathematical Congress, pp. 523–531.

[37]
Tverberg, H. (1966) A generalization of Radon's theorem. J. London Math. Soc.
41
123–128.