[1]
Ajtai M., Chvátal V., Newborn M. M. and Szemerédi E. (1982) Crossing-free subgraphs. In Theory and Practice of Combinatorics, Vol. 60 of North-Holland Mathematics Studies, North-Holland, pp. 9–12.

[2]
Alon N. and Spencer J. H. (2008) The Probabilistic Method, third edition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley.

[3]
Arocha J. L., Bárány I., Bracho J., Fabila R. and Montejano L. (2009) Very colorful theorems. Discrete Comput. Geom.
42
142–154.

[4]
Asada M., Chen R., Frick F., Huang F., Polevy M., Stoner D., Tsang L. H. and Wellner Z. (2016) On Reay's relaxed Tverberg conjecture and generalizations of Conway's thrackle conjecture. arXiv:1608.04279

[5]
Bárány I. (1982) A generalization of Carathéodory's theorem. Discrete Math.
40
141–152.

[6]
Bárány I. (2015) Tensors, colours, octahedra. In Geometry, Structure and Randomness in Combinatorics (Matoušek J.
et al., eds), Edizione della Normale, pp. 1–17.

[7]
Bárány I. Personal communication.

[8]
Bárány I. and Larman D. G. (1992) A colored version of Tverberg's theorem. J. London Math. Soc.
s2-45 314–320.

[9]
Bárány I. and Onn S. (1997) Colourful linear programming and its relatives. Math. Oper. Res.
22
550–567.

[10]
Blagojević P. V. M., Frick F. and Ziegler G. M. (2014) Tverberg plus constraints. Bull. London Math. Soc.
46
953–967.

[11]
Blagojević P. V. M., Matschke B. and Ziegler G. M. (2011) Optimal bounds for a colorful Tverberg–Vrećica type problem. Adv. Math.
226
5198–5215.

[12]
Blagojević P. V. M., Matschke B. and Ziegler G. M. (2015) Optimal bounds for the colored Tverberg problem. J. Eur. Math. Soc.
17
739–754.

[13]
Chazelle B. and Friedman J. (1990) A deterministic view of random sampling and its use in geometry. Combinatorica
10
229–249.

[14]
Clarkson K. L. (1987) New applications of random sampling in computational geometry. Discrete Comput. Geom.
2
195–222.

[15]
Clarkson K. L., Eppstein D., Miller G. L., Sturtivant C. and Teng S.-H. (1996) Approximating center points with iterative Radon points. Internat. J. Comput. Geom. Appl.
6
357–377.

[16]
Forge D., Las Vergnas M. and Schuchert P. (2001) 10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope. Europ. J. Combin.
22
705–708.

[17]
García-Colín N. (2007) Applying Tverberg type theorems to geometric problems. PhD thesis, University College London.

[18]
García-Colín N. and Larman D. (2015) Projective equivalences of *k*-neighbourly polytopes. Graphs Combin.
31
1403–1422.

[19]
García-Colín N., Raggi M. and Roldán-Pensado E. (2017) A note on the tolerant Tverberg theorem. Discrete Comput. Geom.
58, no. 3, 746–754.

[20]
Haussler D. and Welzl E. (1987) ϵ-nets and simplex range queries. Discrete Comput. Geom.
2
127–151.

[21]
Holmsen A. F. (2016) The intersection of a matroid and an oriented matroid. Adv. Math.
290
1–14.

[22]
Holmsen A. F., Pach J. and Tverberg H. (2008) Points surrounding the origin. Combinatorica
28
633–644.

[23]
Larman D. G. (1972) On sets projectively equivalent to the vertices of a convex polytope. Bull. London Math. Soc.
4
6–12.

[24]
Liu R. Y., Serfling R. J. and Souvaine D. L. (2006) Data Depth: Robust Multivariate Analysis, Computational Geometry, and Applications, Vol. 72 of DIMAC Series in Discrete Mathematics and Theoretical Computer Science, AMS.

[25]
Matoušek J. (2002) Lectures on Discrete Geometry, Vol. 212 of Graduate Texts in Mathematics, Springer.

[26]
Miller G. L. and Sheehy D. R. (2009) Approximate center points with proofs. In SCG '09: Twenty-Fifth Annual Symposium on Computational Geometry, ACM, pp. 153–158.

[27]
Montejano L. and Oliveros D. (2011) Tolerance in Helly-type theorems. Discrete Comput. Geom.
45
348–357.

[28]
Mulzer W. and Stein Y. (2013) Algorithms for tolerated Tverberg partitions. In ISAAC 2013: International Symposium on Algorithms and Computation, Springer, pp. 295–305.

[29]
Perles M. A. and Sigron M. (2016) Some variations on Tverberg's theorem. Israel J. Math.
216
957–972.

[30]
Reay J. R. (1979) Several generalizations of Tverberg's theorem. Israel J. Math.
34
238–244.

[31]
Rolnick D. and Soberón P. (2016) Algorithms for Tverberg's theorem via centerpoint theorems. arXiv:1601.03083v2

[32]
Sarkaria K. S. (1992) Tverberg's theorem via number fields. Israel J. Math.
79
317–320.

[33]
Soberón P. (2015) Equal coefficients and tolerance in coloured Tverberg partitions. Combinatorica
35
235–252.

[34]
Soberón P. and Strausz R. (2012) A generalisation of Tverberg's theorem. Discrete Comput. Geom.
47
455–460.

[35]
Székely L. A. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput.
6
353–358.

[36]
Tukey J. W. (1975) Mathematics and the picturing of data. In *Proceedings of the International Congress of Mathematicians*, Vol. 2, Canadian Mathematical Congress, pp. 523–531.

[37]
Tverberg H. (1966) A generalization of Radon's theorem. J. London Math. Soc.
41
123–128.