Skip to main content

Robust Tverberg and Colourful Carathéodory Results via Random Choice


We use the probabilistic method to obtain versions of the colourful Carathéodory theorem and Tverberg's theorem with tolerance.

In particular, we give bounds for the smallest integer N = N(t,d,r) such that for any N points in ℝd, there is a partition of them into r parts for which the following condition holds: after removing any t points from the set, the convex hulls of what is left in each part intersect.

We prove a bound N = rt + O( $\sqrt{t}$ ) for fixed r,d which is polynomial in each parameters. Our bounds extend to colourful versions of Tverberg's theorem, as well as Reay-type variations of this theorem.

Hide All
[1] Ajtai, M., Chvátal, V., Newborn, M. M. and Szemerédi, E. (1982) Crossing-free subgraphs. In Theory and Practice of Combinatorics, Vol. 60 of North-Holland Mathematics Studies, North-Holland, pp. 912.
[2] Alon, N. and Spencer, J. H. (2008) The Probabilistic Method, third edition, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley.
[3] Arocha, J. L., Bárány, I., Bracho, J., Fabila, R. and Montejano, L. (2009) Very colorful theorems. Discrete Comput. Geom. 42 142154.
[4] Asada, M., Chen, R., Frick, F., Huang, F., Polevy, M., Stoner, D., Tsang, L. H. and Wellner, Z. (2016) On Reay's relaxed Tverberg conjecture and generalizations of Conway's thrackle conjecture. arXiv:1608.04279
[5] Bárány, I. (1982) A generalization of Carathéodory's theorem. Discrete Math. 40 141152.
[6] Bárány, I. (2015) Tensors, colours, octahedra. In Geometry, Structure and Randomness in Combinatorics (Matoušek, J. et al., eds), Edizione della Normale, pp. 117.
[7] Bárány, I. Personal communication.
[8] Bárány, I. and Larman, D. G. (1992) A colored version of Tverberg's theorem. J. London Math. Soc. s2-45 314320.
[9] Bárány, I. and Onn, S. (1997) Colourful linear programming and its relatives. Math. Oper. Res. 22 550567.
[10] Blagojević, P. V. M., Frick, F. and Ziegler, G. M. (2014) Tverberg plus constraints. Bull. London Math. Soc. 46 953967.
[11] Blagojević, P. V. M., Matschke, B. and Ziegler, G. M. (2011) Optimal bounds for a colorful Tverberg–Vrećica type problem. Adv. Math. 226 51985215.
[12] Blagojević, P. V. M., Matschke, B. and Ziegler, G. M. (2015) Optimal bounds for the colored Tverberg problem. J. Eur. Math. Soc. 17 739754.
[13] Chazelle, B. and Friedman, J. (1990) A deterministic view of random sampling and its use in geometry. Combinatorica 10 229249.
[14] Clarkson, K. L. (1987) New applications of random sampling in computational geometry. Discrete Comput. Geom. 2 195222.
[15] Clarkson, K. L., Eppstein, D., Miller, G. L., Sturtivant, C. and Teng, S.-H. (1996) Approximating center points with iterative Radon points. Internat. J. Comput. Geom. Appl. 6 357377.
[16] Forge, D., Las Vergnas, M. and Schuchert, P. (2001) 10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope. Europ. J. Combin. 22 705708.
[17] García-Colín, N. (2007) Applying Tverberg type theorems to geometric problems. PhD thesis, University College London.
[18] García-Colín, N. and Larman, D. (2015) Projective equivalences of k-neighbourly polytopes. Graphs Combin. 31 14031422.
[19] García-Colín, N., Raggi, M. and Roldán-Pensado, E. (2017) A note on the tolerant Tverberg theorem. Discrete Comput. Geom. 58, no. 3, 746754.
[20] Haussler, D. and Welzl, E. (1987) ϵ-nets and simplex range queries. Discrete Comput. Geom. 2 127151.
[21] Holmsen, A. F. (2016) The intersection of a matroid and an oriented matroid. Adv. Math. 290 114.
[22] Holmsen, A. F., Pach, J. and Tverberg, H. (2008) Points surrounding the origin. Combinatorica 28 633644.
[23] Larman, D. G. (1972) On sets projectively equivalent to the vertices of a convex polytope. Bull. London Math. Soc. 4 612.
[24] Liu, R. Y., Serfling, R. J. and Souvaine, D. L. (2006) Data Depth: Robust Multivariate Analysis, Computational Geometry, and Applications, Vol. 72 of DIMAC Series in Discrete Mathematics and Theoretical Computer Science, AMS.
[25] Matoušek, J. (2002) Lectures on Discrete Geometry, Vol. 212 of Graduate Texts in Mathematics, Springer.
[26] Miller, G. L. and Sheehy, D. R. (2009) Approximate center points with proofs. In SCG '09: Twenty-Fifth Annual Symposium on Computational Geometry, ACM, pp. 153158.
[27] Montejano, L. and Oliveros, D. (2011) Tolerance in Helly-type theorems. Discrete Comput. Geom. 45 348357.
[28] Mulzer, W. and Stein, Y. (2013) Algorithms for tolerated Tverberg partitions. In ISAAC 2013: International Symposium on Algorithms and Computation, Springer, pp. 295305.
[29] Perles, M. A. and Sigron, M. (2016) Some variations on Tverberg's theorem. Israel J. Math. 216 957972.
[30] Reay, J. R. (1979) Several generalizations of Tverberg's theorem. Israel J. Math. 34 238244.
[31] Rolnick, D. and Soberón, P. (2016) Algorithms for Tverberg's theorem via centerpoint theorems. arXiv:1601.03083v2
[32] Sarkaria, K. S. (1992) Tverberg's theorem via number fields. Israel J. Math. 79 317320.
[33] Soberón, P. (2015) Equal coefficients and tolerance in coloured Tverberg partitions. Combinatorica 35 235252.
[34] Soberón, P. and Strausz, R. (2012) A generalisation of Tverberg's theorem. Discrete Comput. Geom. 47 455460.
[35] Székely, L. A. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin. Probab. Comput. 6 353358.
[36] Tukey, J. W. (1975) Mathematics and the picturing of data. In Proceedings of the International Congress of Mathematicians, Vol. 2, Canadian Mathematical Congress, pp. 523–531.
[37] Tverberg, H. (1966) A generalization of Radon's theorem. J. London Math. Soc. 41 123128.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed