Skip to main content
×
×
Home

A Stability Theorem for Matchings in Tripartite 3-Graphs

  • PENNY HAXELL (a1) and LOTHAR NARINS (a1)
Abstract

It follows from known results that every regular tripartite hypergraph of positive degree, with n vertices in each class, has matching number at least n/2. This bound is best possible, and the extremal configuration is unique. Here we prove a stability version of this statement, establishing that every regular tripartite hypergraph with matching number at most (1 + ϵ)n/2 is close in structure to the extremal configuration, where ‘closeness’ is measured by an explicit function of ϵ.

Copyright
References
Hide All
[1] Adamaszek, M. and Barmak, J. A. (2011) On a lower bound for the connectivity of the independence complex of a graph. Discrete Math. 311 25662569.
[2] Aharoni, R. (2001) Ryser's conjecture for tripartite 3-graphs. Combinatorica 21 14.
[3] Aharoni, R., Alon, N., Amir, M., Haxell, P., Hefetz, D., Jiang, Z., Kronenberg, G. and Naor, A. (2017) Ramsey-nice families of graphs. arXiv:1708.07369
[4] Aharoni, R. and Berger, E. (2006) The intersection of a matroid and a simplicial complex. Trans. Amer. Math. Soc. 358 48954917.
[5] Aharoni, R., Berger, E. and Ziv, R. (2007) Independent systems of representatives in weighted graphs. Combinatorica 27 253267.
[6] Aharoni, R. and Haxell, P. (2000) Hall's theorem for hypergraphs. J. Graph Theory 35 8388.
[7] Alon, N. and Kim, J. H. (1997) On the degree, size, and chromatic index of a uniform hypergraph. J. Combin. Theory Ser. A 77 165170.
[8] Haxell, P., Narins, L. and Szabó, T. Extremal hypergraphs for Ryser's conjecture. J. Combin. Theory Ser. A, to appear
[9] Meshulam, R. (2003) Domination numbers and homology. J. Combin. Theory Ser. A 102 321330.
[10] Milnor, J. (1956) Construction of universal bundles, II. Ann. of Math. 63 430436.
[11] Narins, L. (2014) Extremal hypergraphs for Ryser's conjecture. PhD thesis, Freie Universität Berlin.
[12] Ryser, H. (1967) Neuere Probleme der Kombinatorik. In Vorträge über Kombinatorik Oberwolfach, Mathematisches Forschungsinstitut Oberwolfach, Colloquia Mathematica Societatis János Bolyai, pp. 69–91.
[13] Sperner, E. (1928) Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. Abh. Math. Sem. Univ. Hamburg 6 265272.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 77 *
Loading metrics...

* Views captured on Cambridge Core between 2nd April 2018 - 20th June 2018. This data will be updated every 24 hours.