Hostname: page-component-cb9f654ff-plnhv Total loading time: 0.001 Render date: 2025-08-13T08:09:15.732Z Has data issue: false hasContentIssue false

A stability theorem for multi-partite graphs

Published online by Cambridge University Press:  11 August 2025

Wanfang Chen
Affiliation:
School of Mathematical Sciences Key Laboratory of MEA(Ministry of Education) Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
Changhong Lu
Affiliation:
School of Mathematical Sciences Key Laboratory of MEA(Ministry of Education) Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
Long-Tu Yuan*
Affiliation:
School of Mathematical Sciences Key Laboratory of MEA(Ministry of Education) Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai, China
*
Corresponding author: Long-Tu Yuan; Email: ltyuan@math.ecnu.edu.cn

Abstract

The Erdős–Simonovits stability theorem is one of the most widely used theorems in extremal graph theory. We obtain an Erdős–Simonovits type stability theorem in multi-partite graphs. Different from the Erdős–Simonovits stability theorem, our stability theorem in multi-partite graphs says that if the number of edges of an $H$-free graph $G$ is close to the extremal graphs for $H$, then $G$ has a well-defined structure but may be far away from the extremal graphs for $H$. As applications, we strengthen a theorem of Bollobás, Erdős, and Straus and solve a conjecture in a stronger form posed by Han and Zhao concerning the maximum number of edges in multi-partite graphs which does not contain vertex-disjoint copies of a clique.

MSC classification

Information

Type
Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bollobás, B., Erdős, P. and Straus, E. G. (1974) Complete subgraphs of chromatic graphs and hypergraphs. Utilitas Math. 6 343347.Google Scholar
Bollobás, B., Erdős, P. and Szemerédi, E. (1975) On complete subgraphs of r-chromatic graphs. Discrete Math 13(2) 97107.10.1016/0012-365X(75)90011-4CrossRefGoogle Scholar
Bollobás, B. (1978) Extremal Graph Theory. Academic Press, New York.Google Scholar
Chen, H., Li, X. and Tu, J. (2009) Complete solution for the rainbow numbers of matching. Discrete Math. 309(10) 33703380.10.1016/j.disc.2008.10.002CrossRefGoogle Scholar
Conlon, D. (2022) Some remarks on the Zarankiewicz problem. Math. Proc. Cambridge Philos. Soc. 173 155161.10.1017/S0305004121000475CrossRefGoogle Scholar
Erdős, P. (1967) Some recent results on extremal problem in graph theory, Theory of Graphs, (P. Rosenstiehl ed), (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, and Dunod, Paris: 117123.Google Scholar
Erdős, P. (1968) On some new inequalities concering extremal properties of graphs. In Theory of Graphs (P. Erdős and G. Katona, eds), Academic Press, New. York, pp. 7781.Google Scholar
Erdős, P. and Simonovits, M. (1971) An extremal graph problem. Acta Math. Hung. 22(3-4) 275282.10.1007/BF01896420CrossRefGoogle Scholar
Erdős, P. and Stone, A. H. (1946) On the structure of linear graphs. Bull. Amer. Math. 52 10891091.Google Scholar
Füredi, Z. (2015) A proof of the stability of extremal graphs, Simonovits’ stability from Szemerédi’s regularity. J. Combin. Theory Ser. B 115 6671.10.1016/j.jctb.2015.05.001CrossRefGoogle Scholar
Han, J. and Zhao, Y. (2022) Turán number of disjoint triangles in 4-partite graphs. Electron. J. Comb. 29(2) P2.35.10.37236/10148CrossRefGoogle Scholar
Haxell, P. E. (2001) A note on vertex list colouring. Combin. Probab. Comput. 10(4) 345347.10.1017/S0963548301004758CrossRefGoogle Scholar
Haxell, P. E. and Szabó, T. (2006) Odd independent transversals are odd. Combin. Probab. Comput. 15(1-2) 193211.10.1017/S0963548305007157CrossRefGoogle Scholar
Jin, G. P. (1992) Complete subgraphs of r-partite graphs, Combin. Probab. Comput 1(3) 241250.10.1017/S0963548300000274CrossRefGoogle Scholar
Kövári, T., Sós, V. T. and Turán, P. (1954) On a problem of K. Zarankiewicz. Colloq. Math. 3 5057.10.4064/cm-3-1-50-57CrossRefGoogle Scholar
Mubayi, D. (2010) Counting substructures I: color critical graphs. Adv. Math. 225(5) 27312740.10.1016/j.aim.2010.05.013CrossRefGoogle Scholar
Pfender, F. (2012) Complete subgraphs in multipartite graphs. Combinatorica 32 483495.10.1007/s00493-012-2425-5CrossRefGoogle Scholar
Pikhurko, O. and Yilma, Z. (2017) Supersaturation problem for color-critical graphs. J. Combin. Theory Ser. B 123 148185.10.1016/j.jctb.2016.12.001CrossRefGoogle Scholar
Simonovits, M. (1968) A method for solving extremal problems in graph theory, stability problems. In Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, New York, pp. 279319.Google Scholar
De Silva, J., Heysse, K., Kapilow, A., Schenfisch, A. and Young, M. (2018) Turán numvers of vertex-disjoint cliques in r-partite graphs. Discrete Math 341(2) 492496.10.1016/j.disc.2017.09.016CrossRefGoogle Scholar
Szabó, T. and Tardos, G. (2006) Extremal problems for transversals in graphs with bounded degree. Combinatorica 26(3) 333351.10.1007/s00493-006-0019-9CrossRefGoogle Scholar
Turán, P. (1941) On an extremal problem in graph theory (in Hungrarian). Középisk. Mat. és Fiz. Lapok 48 436452.Google Scholar
Zarakiewicz, K. (1954) Problem p. 101. Colloq. Math 3 1930.Google Scholar
Zykov, A. A. (1949) On some properties of linear complexes. Mat. Sb. N.S. 24(66) 163188.Google Scholar