Skip to main content
    • Aa
    • Aa

Fast Simulation of Lipid Vesicle Deformation Using Spherical Harmonic Approximation

  • Michael Mikucki (a1) and Yongcheng Zhou (a2)

Lipid vesicles appear ubiquitously in biological systems. Understanding how the mechanical and intermolecular interactions deform vesicle membranes is a fundamental question in biophysics. In this article we develop a fast algorithm to compute the surface configurations of lipid vesicles by introducing surface harmonic functions to approximate themembrane surface. This parameterization allows an analytical computation of the membrane curvature energy and its gradient for the efficient minimization of the curvature energy using a nonlinear conjugate gradient method. Our approach drastically reduces the degrees of freedom for approximating the membrane surfaces compared to the previously developed finite element and finite difference methods. Vesicle deformations with a reduced volume larger than 0.65 can be well approximated by using as small as 49 surface harmonic functions. The method thus has a great potential to reduce the computational expense of tracking multiple vesicles which deform for their interaction with external fields.

Corresponding author
*Corresponding author. Email (M. Mikucki), (Y. Zhou)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] ProsenjitBagchi . Mesoscale simulation of blood flow in small vessels. Biophys. J., 92(6):18581877, 2007.

[2] Amir HoushangBahrami and Mir AbbasJalali . Vesicle deformations by clusters of transmembrane proteins. J. Chem. Phys., 134:085106, 2011.

[3] P.B.Canham . The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol., 26(1):6181, 1970.

[4] R.Capovilla , J.Guven , and J. A.Santiago . Deformations of the geometry of lipid vesicles. J. Phys. A – Math. Gen., 36(23):6281, 2003.

[5] Fredric S.Cohen , RobertEisenberg , and Rolf J.Ryham . A dynamic model of open vesicles in fluids. Commun. Math. Sci., 10:12731285, 2012.

[6] SovanDas and QiangDu . Adhesion of vesicles to curved substrates. Phys. Rev. E, 77:011907, Jan 2008.

[7] QiangDu , ChunLiu , RolfRyham , and XiaoqiangWang . A phase field formulation of the Willmore problem. Nonlinearity, 18:1249, 2005.

[8] QiangDu , ChunLiu , and XiaoqiangWang . A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys., 198(2):450468, 2004.

[9] QiangDu , ChunLiu , and XiaoqiangWang . Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys., 212(2):757777, 2006.

[10] C. D.Eggleton and A. S.Popel . Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids, 10(8):18341845, 1998.

[11] E.A.Evans . Bending resistance and chemically induced moments in membrane bilayers. Biophys. J., 14(12):923931, 1974.

[12] EvanEvans and Yuan-ChengFung . Improved measurements of the erythrocyte geometry. Microvasc. Res., 4(4):335347, 1972.

[13] KhashayarFarsad and PietroDe Camilli . Mechanisms of membrane deformation. Curr. Opin. Cell Biol., 15(4):372381, 2003.

[14] FengFeng and William S.Klug . Finite element modeling of lipid bilayer membranes. J. Comput. Phys., 220(1):394408, 2006.

[16] VolkmarHeinrich , BojanBozic , SasaSvetina , and BostjanZeks . Vesicle deformation by an axial load: From elongated shapes to tethered vesicles. Biophys. J., 76:20562071, 1999.

[17] W.Helfrich et al. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C, 28(11):693703, 1973.

[18] Roger D.Kamm . cellular fluid mechanics. Annu. Rev. Fluid Mech., 34(1):211232, 2002.

[19] JensKeiner and DanielPotts . Fast evaluation of quadrature formulae on the sphere. Math. Comp., 77:397419, 2008.

[20] KhaledKhairy and JonathonHoward . Minimum-energy vesicle and cell shapes calculated using spherical harmonics parameterization. Soft Matter, 7:21382143, 2011.

[21] StefanKunis and DanielPotts . Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161(1):7598, 2003.

[22] ShuwangLi , JohnLowengrub , and AxelVoigt . Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids. Commun. Math. Sci., 10:645670, 2012.

[23] L.Ma and W. S.Klug . Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys., 227(11):58165835, 2008.

[24] M.Mikucki and Y.Zhou . Electrostatic forces on charged surfaces of bilayer lipid membranes. SIAM J. Appl.Math., 74(1):121, 2014.

[25] JorgeNocedal and Stephen J.Wright . Numerical optimization. Springer series in operations research and financial engineering. Springer, New York, NY, 2. ed. edition, 2006.

[26] Thomas R.Powers . Mechanics of lipid bilayer membranes. In SidneyYip , editor, Handbook of Materials Modeling, pages 26312643. Springer Netherlands, 2005.

[27] VladimirRokhlin and MarkTygert . Fast Algorithms for Spherical Harmonic Expansions. SIAM J. Sci. Comput., 27(6):1903–28, 2006.

[28] UdoSeifert . Configurations of fluid membranes and vesicles. Adv. Phys., 46(1):13137, 1997.

[29] UdoSeifert , KarinBerndl , and ReinhardLipowsky . Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A, 44:11821202, Jul 1991.

[30] AvramSidi . Application of class Sm variable transformations to numerical integration over surfaces of spheres. J. Comput. Appl. Math., 184(2):475492, 2005.

[31] Jin SunSohn , Yu-HauTseng , ShuwangLi , AxelVoigt , and John S.Lowengrub . Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys., 229(1):119144, 2010.

[33] JeromeSolon , OlivierGareil , PatriciaBassereau , and YvesGaudin . Membrane deformations induced by the matrix protein of vesicular stomatitis virus in aminimal system. J. Gen. Virol., 86(12):33573363, 2005.

[34] Knut ErikTeigen , PengSong , JohnLowengrub , and AxelVoigt . A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys., 230:375393, 2011.

[35] XiaoqiangWang and QiangDu . Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol., 56:347371, 2008.

[36] Guo-WeiWei . Differential geometry based multiscale models. Bulletin of Mathematical Biology, 72(6):15621622, 2010.

[37] StevenWise , JunseokKim , and JohnLowengrub . Solving the regularized, strongly anisotropic CahnHilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys., 226(1):414446, 2007.

[38] KelinXia , XinFeng , ZhanChen , YiyingTong , and Guo-WeiWei . Multiscale geometric modeling of macromolecules I: Cartesian representation. J. Comput. Phys., 257, Part A:912936, 2014.

[39] Jian-JunXu , YinYang , and JohnLowengrub . A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys., 231(17):58975909, 2012.

[40] Shravan K.Veerapaneni , AbtinRahimian , GeorgeBiros and DenisZorin . A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys., 230(14):56105634, 2011.

[41] XiaofengYang , Ashley J.James , JohnLowengrub , XiaomingZheng , and VittorioCristini . An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J. Comput. Phys., 217(2):364394, 2006.

[42] Ou-YangZhong-can and W.Helfrich . Instability and deformation of a spherical vesicle by pressure. Phys. Rev. Lett., 59:24862488, 1987.

[43] Y. C.Zhou , B.Lu , and A. A.Gorfe . Continuum electromechanical modeling of protein-membrane interactions. Phys. Rev. E, 82(4):041923, 2010.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *