Skip to main content
×
Home
    • Aa
    • Aa

Fast Simulation of Lipid Vesicle Deformation Using Spherical Harmonic Approximation

  • Michael Mikucki (a1) and Yongcheng Zhou (a2)
Abstract
Abstract

Lipid vesicles appear ubiquitously in biological systems. Understanding how the mechanical and intermolecular interactions deform vesicle membranes is a fundamental question in biophysics. In this article we develop a fast algorithm to compute the surface configurations of lipid vesicles by introducing surface harmonic functions to approximate themembrane surface. This parameterization allows an analytical computation of the membrane curvature energy and its gradient for the efficient minimization of the curvature energy using a nonlinear conjugate gradient method. Our approach drastically reduces the degrees of freedom for approximating the membrane surfaces compared to the previously developed finite element and finite difference methods. Vesicle deformations with a reduced volume larger than 0.65 can be well approximated by using as small as 49 surface harmonic functions. The method thus has a great potential to reduce the computational expense of tracking multiple vesicles which deform for their interaction with external fields.

Copyright
Corresponding author
*Corresponding author. Email addresses:mikucki@mines.edu (M. Mikucki), yzhou@math.colostate.edu (Y. Zhou)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] Prosenjit Bagchi . Mesoscale simulation of blood flow in small vessels. Biophys. J., 92(6):18581877, 2007.

[2] Amir Houshang Bahrami and Mir Abbas Jalali . Vesicle deformations by clusters of transmembrane proteins. J. Chem. Phys., 134:085106, 2011.

[3] P.B. Canham . The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol., 26(1):6181, 1970.

[4] R. Capovilla , J. Guven , and J. A. Santiago . Deformations of the geometry of lipid vesicles. J. Phys. A – Math. Gen., 36(23):6281, 2003.

[5] Fredric S. Cohen , Robert Eisenberg , and Rolf J. Ryham . A dynamic model of open vesicles in fluids. Commun. Math. Sci., 10:12731285, 2012.

[6] Sovan Das and Qiang Du . Adhesion of vesicles to curved substrates. Phys. Rev. E, 77:011907, Jan 2008.

[7] Qiang Du , Chun Liu , Rolf Ryham , and Xiaoqiang Wang . A phase field formulation of the Willmore problem. Nonlinearity, 18:1249, 2005.

[8] Qiang Du , Chun Liu , and Xiaoqiang Wang . A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys., 198(2):450468, 2004.

[9] Qiang Du , Chun Liu , and Xiaoqiang Wang . Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys., 212(2):757777, 2006.

[10] C. D. Eggleton and A. S. Popel . Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids, 10(8):18341845, 1998.

[11] E.A. Evans . Bending resistance and chemically induced moments in membrane bilayers. Biophys. J., 14(12):923931, 1974.

[12] Evan Evans and Yuan-Cheng Fung . Improved measurements of the erythrocyte geometry. Microvasc. Res., 4(4):335347, 1972.

[13] Khashayar Farsad and Pietro De Camilli . Mechanisms of membrane deformation. Curr. Opin. Cell Biol., 15(4):372381, 2003.

[14] Feng Feng and William S. Klug . Finite element modeling of lipid bilayer membranes. J. Comput. Phys., 220(1):394408, 2006.

[16] Volkmar Heinrich , Bojan Bozic , Sasa Svetina , and Bostjan Zeks . Vesicle deformation by an axial load: From elongated shapes to tethered vesicles. Biophys. J., 76:20562071, 1999.

[17] W. Helfrich et al. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C, 28(11):693703, 1973.

[18] Roger D. Kamm . cellular fluid mechanics. Annu. Rev. Fluid Mech., 34(1):211232, 2002.

[19] Jens Keiner and Daniel Potts . Fast evaluation of quadrature formulae on the sphere. Math. Comp., 77:397419, 2008.

[20] Khaled Khairy and Jonathon Howard . Minimum-energy vesicle and cell shapes calculated using spherical harmonics parameterization. Soft Matter, 7:21382143, 2011.

[21] Stefan Kunis and Daniel Potts . Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161(1):7598, 2003.

[22] Shuwang Li , John Lowengrub , and Axel Voigt . Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids. Commun. Math. Sci., 10:645670, 2012.

[23] L. Ma and W. S. Klug . Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys., 227(11):58165835, 2008.

[24] M. Mikucki and Y. Zhou . Electrostatic forces on charged surfaces of bilayer lipid membranes. SIAM J. Appl.Math., 74(1):121, 2014.

[25] Jorge Nocedal and Stephen J. Wright . Numerical optimization. Springer series in operations research and financial engineering. Springer, New York, NY, 2. ed. edition, 2006.

[26] Thomas R. Powers . Mechanics of lipid bilayer membranes. In Sidney Yip , editor, Handbook of Materials Modeling, pages 26312643. Springer Netherlands, 2005.

[27] Vladimir Rokhlin and Mark Tygert . Fast Algorithms for Spherical Harmonic Expansions. SIAM J. Sci. Comput., 27(6):1903–28, 2006.

[28] Udo Seifert . Configurations of fluid membranes and vesicles. Adv. Phys., 46(1):13137, 1997.

[29] Udo Seifert , Karin Berndl , and Reinhard Lipowsky . Shape transformations of vesicles: Phase diagram for spontaneous-curvature and bilayer-coupling models. Phys. Rev. A, 44:11821202, Jul 1991.

[30] Avram Sidi . Application of class Sm variable transformations to numerical integration over surfaces of spheres. J. Comput. Appl. Math., 184(2):475492, 2005.

[31] Jin Sun Sohn , Yu-Hau Tseng , Shuwang Li , Axel Voigt , and John S. Lowengrub . Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys., 229(1):119144, 2010.

[33] Jerome Solon , Olivier Gareil , Patricia Bassereau , and Yves Gaudin . Membrane deformations induced by the matrix protein of vesicular stomatitis virus in aminimal system. J. Gen. Virol., 86(12):33573363, 2005.

[34] Knut Erik Teigen , Peng Song , John Lowengrub , and Axel Voigt . A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys., 230:375393, 2011.

[35] Xiaoqiang Wang and Qiang Du . Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol., 56:347371, 2008.

[36] Guo-Wei Wei . Differential geometry based multiscale models. Bulletin of Mathematical Biology, 72(6):15621622, 2010.

[37] Steven Wise , Junseok Kim , and John Lowengrub . Solving the regularized, strongly anisotropic CahnHilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys., 226(1):414446, 2007.

[38] Kelin Xia , Xin Feng , Zhan Chen , Yiying Tong , and Guo-Wei Wei . Multiscale geometric modeling of macromolecules I: Cartesian representation. J. Comput. Phys., 257, Part A:912936, 2014.

[39] Jian-Jun Xu , Yin Yang , and John Lowengrub . A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys., 231(17):58975909, 2012.

[40] Shravan K. Veerapaneni , Abtin Rahimian , George Biros and Denis Zorin . A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys., 230(14):56105634, 2011.

[41] Xiaofeng Yang , Ashley J. James , John Lowengrub , Xiaoming Zheng , and Vittorio Cristini . An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids. J. Comput. Phys., 217(2):364394, 2006.

[42] Ou-Yang Zhong-can and W. Helfrich . Instability and deformation of a spherical vesicle by pressure. Phys. Rev. Lett., 59:24862488, 1987.

[43] Y. C. Zhou , B. Lu , and A. A. Gorfe . Continuum electromechanical modeling of protein-membrane interactions. Phys. Rev. E, 82(4):041923, 2010.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 17 *
Loading metrics...

Abstract views

Total abstract views: 111 *
Loading metrics...

* Views captured on Cambridge Core between 5th December 2016 - 1st May 2017. This data will be updated every 24 hours.