[1]
Bender, C. and Zhang, J., Time discretization and Markovian iteration for coupled FBSDEs, Ann. Appl. Probab., 18(2008), pp. 143–177.

[2]
Bismut, J.M., Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl., 44(1973), pp. 384–404.

[3]
Bouchard, B. and Touzi, N., Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Process. Appl., 111(2004), pp. 175–206.

[4]
Chassagneux, J.F. and Crisen, D., Runge-Kutta schemes for BSDEs, Ann. Appl. Probab., 24(2), 2014, pp. 679–720.

[5]
Cheridito, P., Soner, H. M., Touzi, N., and Victoir, Nicolas, Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs, Communications on Pure and Applied Mathematics, Vol. LX(2007), pp. 1081–1110.

[6]
Douglas, J., Ma, J. and Protter, P., Numerical methods for forward-backward stochastic differential equations, Ann. Appl. Probab., 6(1996), pp. 940–968.

[7]
Fahim, A., Touzi, N., and Warin, X., A probabilistic numerical method for fully nonlinear parabolic PDEs, Ann. Appl. Probab., 4(2011), pp. 1322–1364.

[8]
Fu, Y., Zhao, W. and Zhou, T., Multistep schemes for forward backward stochastic differential equations with jumps, J. Sci. Comput., 69(2016), pp. 651–672.

[9]
Fu, Y., Zhao, W., and Zhou, T., Efficient sparse grid approximations for multi-dimensional coupled forward backward stochastic differential equations, submitted, 2015.

[10]
Guo, W., Zhang, J., and Zhuo, J., A Monotone Scheme for High Dimensional Fully Nonlinear PDEs, Ann. Appl. Probab., 25(2015), 1540–1580.

[11]
EL Karoui, N., Peng, S., and Quenez, M. C., Backward stochastic differential equations in finance, Math. Finance, 7(1997), pp. 1–71.

[12]
Ma, J., Protter, P., and Yong, J., Solving forward-backward stochastic differential equations explicitly – a four step scheme, Probab. Theory Related Fields, 98(1994), pp. 339–359.

[13]
Ma, J., Shen, J., and Zhao, Y., On numerical approximations of forward-backward stochastic differential equations, SIAM J. Numer. Anal., 46(2008), pp. 2636–2661.

[14]
Ma, J. and Yong, J., Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Mathematics, vol. 1702. Berlin: Springer.

[15]
Milstein, G. N. and Tretyakov, M. V., Numerical algorithms for forward-backward stochastic differential equations, SIAM J. Sci. Comput., 28(2006), pp. 561–582.

[16]
Oksendal, B., Stochastic Differential Equations, Six Edition, Springer-Verlag, Berlin, 2003.

[17]
Pardoux, E. and Peng, S., Adapted solution of a backward stochastic differential equation, Systems Control Lett., 14(1990), pp. 55–61.

[18]
Peng, S., Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Repts., 37(1991), pp. 61–74.

[19]
Soner, H.M., Touzi, N., and Zhang, J., Wellposedness of second order backward SDEs, Probab. Theory Relat. Fields, Vol. 153(2012), pp. 149–190.

[20]
Tang, T., Zhao, W., and Zhou, T., Highly accurate numerical schemes for forward backward stochastic differential equations based on deferred correction approach, submitted, 2015.

[21]
Zhang, J., A numerical scheme for BSDEs, Ann. Appl. Probab., 14(2004), pp. 459–488.

[22]
Zhao, W., Chen, L. and Peng, S., A new kind of accurate numerical method for backward stochastic differential equations, SIAM J. Sci. Comput., 28(2006), pp. 1563–1581.

[23]
Zhao, W., Fu, Y., and Zhou, T., New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations, SIAM J. Sci. Comput., 36(4), 2014, pp. A1731–1751.

[24]
Zhao, W., Zhang, G. and Ju, L., A stable multistep scheme for solving backward stochastic differential equations, SIAM J. Numer. Anal., 48(2010), pp. 1369–1394.

[25]
Zhao, W., Zhang, W. and Ju, L., A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations, Commun. Comput. Phys., 15(2014), pp. 618–646.

[26]
Zhao, W., Zhang, W. and Ju, L., A multistep scheme for decoupled forward-backward stochastic differential equations, Numer. Math. Theory Methods Appl., 9(2), 2016, pp. 262–288.