[1]Bender, C. and Zhang, J., Time discretization and Markovian iteration for coupled
FBSDEs, Ann. Appl. Probab.,
18(2008), pp.
143–177.
[2]Bouchard, B. and Touzi, N., Discrete-time approximation and Monte-Carlo simulation
of backward stochastic differential equations, Stochastic
Process. Appl.,
111(2004),
pp.175–206.
[3]Chassagneux, J.F. and Crisen, D., Runge-Kutta schemes for BSDEs, to appear in Ann. Appl. Probab.,
2014.
[4]Cheridito, P., Soner, H. M., Touuzi, N., and Victoir, Nicolas, Second-order backward stochastic differential equations
and fully nonlinear parabolic PDEs, Communications
on Pure and Applied Mathematics, Vol. LX
(2007), pp.
1081–1110.
[5]Crisan, D. and Manolarakis, K., Solving backward stochastic differential equations using
the cubature method, SIAM J. Math. Finance,
(3)2012, pp.
534–571.
[6]Delarue, F. and Menozzi, S., A forward-backward stochastic algorithm for quasi-linear
PDEs, Ann. Appl. Probab.,
16(2006), pp.
140–184.
[7]Delarue, F., and Menozzi, S., An interpolated stochastic algorithm for quasi-linear
pdes. Mathematics of Computation 77, 261 (2008),
125–158.
[8]Douglas, J.,Ma, J. and Protter, P., Numerical methods for forward-backward stochastic
differential equations, Ann. Appl. Probab.,
6(1996), pp.
940–968.
[9]Fahim, Arash, Touzi, Nizar,and Warin, Xavier, A probabilistic numerical method for fully nonlinear
parabolic PDEs, Ann. Appl. Probab.,
4(2011), pp.
1322–1364.
[10]Feng, X., Glowinski, R., and Neilan, M., Recent developments in numerical methods for fully
nonlinear second order partial differential equations.
SIAM Review 55, 2(2013),
205–267.
[11]Fu, Y., Zhao, W., and Zhou, T., Efficient sparse grid approximations for multi-dimensional
coupled forward backward stochastic differential equations,
submitted, 2015.
[12]Guo, W.,Zhang, J., and Zhuo, J., A Monotone Scheme for High Dimensional Fully Nonlinear PDEs,
arXiv:1212.0466, to appear in Ann. Appl. Probab.,
2015.
[13]Kong, Tao, Zhao, Weidong, and Zhou, Tao, High order numerical schemes for second order FBSDEs with applications
to stochastic optimal control,
arXiv:1502.03206,2015.
[14]øksendal, Bernt, Stochastic Differential Equations: An Introduction with
Applications, 6th edition (2014)
Springer.
[15]Lemor, J. P., Gobet, E. and Warin, X., A regression-based Monte Carlo method for backward
stochastic differential equations, Ann. Appl.
Probab., 15(2005), pp.
2172–2202.
[16]Milstein, N. G. and Tretyakov, M. V., Discretization of Forward-Backward Stochastic
Differential Equations And Related Quasi-linear Parabolic
Equations, SIAM J. Numer. Anal,
27(2007),
24–34.
[17]Pardoux, E. and Peng, S., Backward stochastic differential equations and quasilinear
parabolic partial differential equations, Lecture
Notes in CIS, Springer, 176
(1992),
200–217.
[18]Pardoux, E. and Tang, S., Forward-backward stochastic differential equations and
quasilinear parabolic PDEs, Probab. Theory Relat.
Fields, 114 (1999), pp.
123–150.
[19]Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty,
preprint (2010), arXiv:1002.4546v1.
[20]Peng, S. G., Probabilistic interpretation for systems of quasilinear
parabolic partial differential equations, Stoch.
Stoch. Repts., 37 (1991), pp.
61–74.
[21]Soner, H. M., Touzi, N., and Zhang, J., Wellposedness of second order backward
SDEs, Probab. Theory Relat. Fields, Vol.
153 (2012),
pp:149–190.
[22]Tan, X., Probabilistic Numerical Approximation for Stochastic Control Problems,
preprint, 2011.
[23]Tan, X., A splitting method for fully nonlinear degenerate parabolic PDEs,
preprint, 2011.
[24]Tang, T., Zhao, W., and Zhou, T., Deferred correction methods for forward backward stochastic
differential equations, submitted, 2015.
[25]Zhao, W., Chen, L. and Peng, S., A new kind of accurate numerical method for backward
stochastic differential equations, SIAM J. Sci.
Comput., 28 (2006), pp.
1563–1581.
[26]W.Zhao, , Fu, Y., and Zhou, T., New kinds of high-order multistep schemes for coupled
forward backward stochastic differential equations,
SIAM J. Sci. Comput., 36
(4), pp. A1731–1751,
2014.
[27]Zhao, W., Zhang, G. and Ju, L., A stable multistep scheme for solving backward
stochastic differential equations, SIAM J. Numer.
Anal., 48 (2010), pp.
1369–1394.
[28]Zhao, W., Zhang, W. and Ju, L., A numerical method and its error estimates for the
decoupled forward-backward stochastic differential
equations, Commun. Comput. Phys.,
15 (2014), pp.
618–646.