Hostname: page-component-784d4fb959-splj4 Total loading time: 0 Render date: 2025-07-14T05:31:28.840Z Has data issue: true hasContentIssue false

Independence of $\ell $-adic Galois representations over function fields

Published online by Cambridge University Press:  25 April 2013

Wojciech Gajda
Affiliation:
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61614 Poznań, Poland (email: gajda@amu.edu.pl)
Sebastian Petersen
Affiliation:
FB 10 - Mathematik und Naturwissenschaften, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany (email: petersen@mathematik.uni-kassel.de)

Abstract

Let $K$ be a finitely generated extension of $\mathbb {Q}$. We consider the family of $\ell $-adic representations ($\ell $ varies through the set of all prime numbers) of the absolute Galois group of $K$, attached to $\ell $-adic cohomology of a separated scheme of finite type over $K$. We prove that the fields cut out from the algebraic closure of $K$by the kernels of the representations of the family are linearly disjoint over a finite extension of K. This gives a positive answer to a question of Serre.

Information

Type
Research Article
Copyright
Copyright © 2013 The Author(s) 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable