[Ada94]Adams, S., Indecomposability of equivalence relations generated by word hyperbolic groups, Topology 33 (1994), 785–798.
[Alv10]Alvarez, A., Théorème de Kurosh pour les relations d’équivalence boréliennes, Ann. Inst. Fourier (Grenoble) 60 (2010), 1161–1200.
[Ana95]Anantharaman-Delaroche, C., Amenable correspondences and approximation properties for von Neumann algebras, Pacific J. Math. 171 (1995), 309–341.
[BO08]Brown, N. P. and Ozawa, N., ${C}^{\ast } $-algebras and finite-dimensional approximations, in Graduate Studies in Mathematics, Vol. 88 (American Mathematical Society, Providence, RI, 2008). [CH10]Chifan, I. and Houdayer, C., Bass–Serre rigidity results in von Neumann algebras, Duke Math. J. 153 (2010), 23–54.
[CS13]Chifan, I. and Sinclair, T., On the structural theory of ${\mathrm{II} }_{1} $ factors of negatively curved groups, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), 1–33. [CSU13]Chifan, I., Sinclair, T. and Udrea, B., On the structural theory of ${\mathrm{II} }_{1} $ factors of negatively curved groups, II. Actions by product groups, Adv. Math. 245 (2013), 208–236. [Con73]Connes, A., Une classification des facteurs de type $\mathrm{III} $, Ann. Sci. Éc. Norm. Supér. (4) 6 (1973), 133–252. [Con76]Connes, A., Classification of injective factors, Ann. of Math. 104 (1976), 73–115.
[Con94]Connes, A., Noncommutative geometry (Academic Press, San Diego, CA, 1994).
[CFW81]Connes, A., Feldman, J. and Weiss, B., An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), 431–450.
[CJ82]Connes, A. and Jones, V. F. R., A ${\mathrm{II} }_{1} $ factor with two non-conjugate Cartan subalgebras, Bull. Amer. Math. Soc. 6 (1982), 211–212. [CT77]Connes, A. and Takesaki, M., The flow of weights on factors of type III, Tohoku Math. J. 29 (1977), 473–575.
[Dyk93]Dykema, K., Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97–119.
[FT01]Falcone, A. J. and Takesaki, M., Non-commutative flow of weights on a von Neumann algebra, J. Funct. Anal. 182 (2001), 170–206.
[FM77]Feldman, J. and Moore, C. C., Ergodic equivalence relations, cohomology, and von Neumann algebras. $\mathrm{I} $ and $\mathrm{II} $, Trans. Amer. Math. Soc. 234 (1977), 289–324; 325–359. [Gab00]Gaboriau, D., Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), 41–98.
[Hou10]Houdayer, C., Strongly solid group factors which are not interpolated free group factors, Math. Ann. 346 (2010), 969–989.
[HR11]Houdayer, C. and Ricard, É., Approximation properties and absence of Cartan subalgebra for free Araki–Woods factors, Adv. Math. 228 (2011), 764–802.
[HV13]Houdayer, C and Vaes, S., Type $\mathrm{III} $ factors with unique Cartan decomposition, J. Math. Pures Appl. (9) 100 (2013), 564–590. [Io12a]Ioana, A., Cartan subalgebras of amalgamated free product ${\mathrm{II} }_{1} $factors, arXiv:1207.0054. [Io12b]Ioana, A., Classification and rigidity for von Neumann algebras, in Proceedings of the 6th European Congress of Mathematics (Krakow, 2012) (European Mathematical Society, Zürich), to appear, arXiv:1212.0453.
[IPP08]Ioana, A., Peterson, J. and Popa, S., Amalgamated free products of $w$-rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), 85–153. [Jun07]Jung, K., Strongly $1$-bounded von Neumann algebras, Geom. Funct. Anal. 17 (2007), 1180–1200. [Kes59]Kesten, H., Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146–156.
[Kri76]Krieger, W., On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), 19–70.
[Mah64]Maharam, D., Incompressible transformations, Fund. Math. 56 (1964), 35–50.
[OP10a]Ozawa, N. and Popa, S., On a class of ${\mathrm{II} }_{1} $ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), 713–749. [OP10b]Ozawa, N. and Popa, S., On a class of ${\mathrm{II} }_{1} $ factors with at most one Cartan subalgebra $\mathrm{II} $, Amer. J. Math. 132 (2010), 841–866. [Pop06a]Popa, S., On a class of type ${\mathrm{II} }_{1} $ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), 809–899. [Pop06b]Popa, S., Strong rigidity of ${\mathrm{II} }_{1} $ factors arising from malleable actions of w-rigid groups $\mathrm{I} $, $\mathrm{II} $, Invent. Math. 165 (2006), 369–408; 409–451. [Pop07]Popa, S., Deformation and rigidity for group actions and von Neumann algebras, in Proceedings of the International Congress of Mathematicians (Madrid, 2006), Vol. I (European Mathematical Society, Zürich, 2007), 445–477.
[Pop08]Popa, S., On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981–1000.
[PV11]Popa, S. and Vaes, S., Unique Cartan decomposition for ${\mathrm{II} }_{1} $factors arising from arbitrary actions of free groups, Acta Math., to appear, arXiv:1111.6951. [PV12]Popa, S. and Vaes, S., Unique Cartan decomposition for ${\mathrm{II} }_{1} $factors arising from arbitrary actions of hyperbolic groups, J. Reine Angew. Math., to appear, arXiv:1201.2824. [Shl00]Shlyakhtenko, D., Prime type $\mathrm{III} $ factors, Proc. Natl. Acad. Sci. USA 97 (2000), 12439–12441. [SV12]Speelman, A. and Vaes, S., A class of ${\mathrm{II} }_{1} $ factors with many non conjugate Cartan subalgebras, Adv. Math. 231 (2012), 2224–2251. [Tak02]Takesaki, M., Theory of operator algebras. $\mathrm{I} $, in Encyclopaedia of mathematical sciences, Vol. 124, Operator Algebras and Non-commutative Geometry, vol. 5 (Springer, Berlin, 2002). [Tak03]Takesaki, M., Theory of operator algebras. $\mathrm{II} $, in Encyclopaedia of mathematical sciences, Vol. 125, Operator Algebras and Non-commutative Geometry, vol. 6 (Springer, Berlin, 2003). [Ued99]Ueda, Y., Amalgamated free products over Cartan subalgebra, Pacific J. Math. 191 (1999), 359–392.
[Ued11]Ueda, Y., Factoriality, type classification and fullness for free product von Neumann algebras, Adv. Math. 228 (2011), 2647–2671.
[Ued13]Ueda, Y., Some analysis on amalgamated free products of von Neumann algebras in non-tracial setting, J. Lond. Math. Soc. 88 (2013), 25–48.
[Vae07]Vaes, S., Rigidity results for Bernoulli actions and their von Neumann algebras (after S. Popa), Séminaire Bourbaki, exposé 961. Astérisque 311 (2007), 237–294.
[Vae08]Vaes, S., Explicit computations of all finite index bimodules for a family of ${\mathrm{II} }_{1} $ factors, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 743–788. [Vae10]Vaes, S., Rigidity for von Neumann algebras and their invariants, in Proceedings of the International Congress of Mathematicians (Hyderabad, 2010), Vol. III (Hindustan Book Agency, New Delhi, 2010), 1624–1650.
[Vae13]Vaes, S., One-cohomology and the uniqueness of the group measure space decomposition of a ${\mathrm{II} }_{1} $ factor, Math. Ann. 355 (2013), 661–696. [Voi85]Voiculescu, D.-V., Symmetries of some reduced free product ${C}^{\ast } $-algebras., in Operator algebras and their connections with topology and ergodic theory, Lecture Notes in Mathematics, vol. 1132 (Springer, Heidelberg, 1985), 556–588. [VDN92]Voiculescu, D.-V., Dykema, K. J. and Nica, A., Free random variables, CRM Monograph Series 1 (American Mathematical Society, Providence, RI, 1992).
[Voi96]Voiculescu, D.-V., The analogues of entropy and of Fisher’s information measure in free probability theory. $\mathrm{III} $. The absence of Cartan subalgebras, Geom. Funct. Anal. 6 (1996), 172–199.