Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-16T18:59:54.569Z Has data issue: false hasContentIssue false

An arithmetic Hilbert–Samuel theorem for singular hermitian line bundles and cusp forms

Published online by Cambridge University Press:  19 August 2014

Robert J. Berman
Affiliation:
Chalmers Tekniska Högskola and Göteborgs universitet, Göteborg, Sweden email robertb@chalmers.se
Gerard Freixas i Montplet
Affiliation:
CNRS, Institut de Mathématiques de Jussieu, Paris, France email gerard.freixas@imj-prg.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove arithmetic Hilbert–Samuel type theorems for semi-positive singular hermitian line bundles of finite height. This includes the log-singular metrics of Burgos–Kramer–Kühn. The results apply in particular to line bundles of modular forms on some non-compact Shimura varieties. As an example, we treat the case of Hilbert modular surfaces, establishing an arithmetic analogue of the classical result expressing the dimensions of spaces of cusp forms in terms of special values of Dedekind zeta functions.

Type
Research Article
Copyright
© The Author(s) 2014 

References

Abbes, A. and Bouche, T., Théorème de Hilbert-Samuel ‘arithmétique’, Ann. Inst. Fourier (Grenoble) 45 (1995), 375401.CrossRefGoogle Scholar
Arakelov, S. Ju., An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 11791192.Google Scholar
Ash, A., Mumford, D., Rapoport, M. and Tai, Y. S., Smooth compactifications of locally symmetric varieties, second edition (Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010); with the collaboration of Peter Scholze.Google Scholar
Baily, W. L. Jr. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 84 (1966), 442528.Google Scholar
Bedford, E. and Taylor, B. A., The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1976), 144.Google Scholar
Berman, R., Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), 325344.Google Scholar
Berman, R. and Berndtsson, B., Moser-Trudinger type inequalities for complex Monge–Ampère operators and Aubin’s ‘hypothèse fondamentale’, Preprint (2011), arXiv:1109.1263.Google Scholar
Berman, R. and Boucksom, S., Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010), 337394.Google Scholar
Berman, R., Boucksom, S., Guedj, V. and Zeriahi, A., A variational approach to complex Monge–Ampère equations, Publ. Math. Inst. Hautes Études Sci. 14 (2012), 167.Google Scholar
Berndtsson, B., Curvature of vector bundles associated to holomorphic fibrations, Ann. of Math. (2) 169 (2009), 531560.Google Scholar
Berndtsson, B., A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Preprint (2013), arXiv:1305:4975.Google Scholar
Berndtsson, B. and Păun, M., Bergman kernels and the pseudoeffectivity of relative canonical bundles, Duke Math. J. 145 (2008), 341378.CrossRefGoogle Scholar
Bismut, J.-M. and Vasserot, É., The asymptotics of the Ray-Singer analytic torsion associated with high powers of a positive line bundle, Comm. Math. Phys. 125 (1989), 355367.CrossRefGoogle Scholar
Bost, J.-B., Potential theory and Lefschetz theorems for arithmetic surfaces, Ann. Sci. Éc. Norm. Supér. (4) 32 (1999), 241312.Google Scholar
Bost, J.-B., Gillet, H. and Soulé, C., Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 (1994), 9031027.Google Scholar
Boucksom, S., Eyssidieux, P., Guedj, V. and Zeriahi, A., Monge–Ampère equations in big cohomology classes, Acta Math. 205 (2010), 199262.Google Scholar
Bruinier, J. H., Burgos Gil, J. I. and Kühn, U., Borcherds products and arithmetic intersection theory on Hilbert modular surfaces, Duke Math. J. 139 (2007), 188.Google Scholar
Burgos Gil, J. I., Kramer, J. and Kühn, U., Arithmetic characteristic classes of automorphic vector bundles, Doc. Math. 10 (2005), 619716.Google Scholar
Burgos Gil, J. I., Kramer, J. and Kühn, U., Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), 1172.Google Scholar
Chai, C.-L., Arithmetic minimal compactifications of the Hilbert-Blumenthal moduli spaces, Ann. of Math. (2) 131 (1990), 541554.CrossRefGoogle Scholar
Freixas i Montplet, G., An arithmetic Riemann-Roch theorem for pointed stable curves, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 335369.Google Scholar
Freixas i Montplet, G., Heights and metrics with logarithmic singularities, J. Reine Angew. Math. 627 (2009), 97153.Google Scholar
Freixas i Montplet, G., An arithmetic Hilbert-Samuel theorem for pointed stable curves, J. Eur. Math. Soc. 14 (2012), 321351.Google Scholar
Gillet, H. and Soulé, C., Arithmetic intersection theory, Publ. Math. Inst. Hautes Études Sci. 72 (1990), 93174.Google Scholar
Gillet, H. and Soulé, C., Characteristic classes for algebraic vector bundles with Hermitian metric. I, II, Ann. of Math. (2) 131 (1990), 163238.Google Scholar
Gillet, H. and Soulé, C., An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992), 473543.Google Scholar
Guedj, V. and Zeriahi, A., Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), 607639.Google Scholar
Guedj, V. and Zeriahi, A., The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), 442482.Google Scholar
Hahn, T., An arithmetic Riemann-Roch theorem for metrics with cusps, Berichte aus der Mathematik (Shaker Verlag, 2009).Google Scholar
Lazarsfeld, R., Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. (3), vol. 48 (Springer, Berlin, 2004).Google Scholar
Maillot, V. and Roessler, D., Conjectures sur les dérivées logarithmiques des fonctions L d’Artin aux entiers négatifs, Math. Res. Lett. 9 (2002), 715724.Google Scholar
Moriwaki, A., Continuity of volumes on arithmetic varieties, J. Algebraic Geom. 18 (2009), 407457.Google Scholar
Mumford, D., Hirzebruch’s proportionality in the non-compact case, Invent. math. 42 (1977), 239272.Google Scholar
Parson, L. A., Norms of integrable cusp forms, Proc. Amer. Math. Soc. 104 (1988), 10451049.Google Scholar
Rapoport, M., Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math. 36 (1978), 255335.Google Scholar
Skoda, H., Sous-ensembles analytiques d’ordre fini ou infini dans Cn, Bull. Soc. Math. France 100 (1972), 353408.Google Scholar
van der Geer, G., Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 16 (Springer, Berlin, 1988).CrossRefGoogle Scholar
Xia, H., On L norms of holomorphic cusp forms, J. Number Theory 124 (2007), 325327.Google Scholar
Yuan, X., Big line bundles over arithmetic varieties, Invent. Math. 173 (2008), 603649.Google Scholar
Zelditch, S., Holomorphic Morse inequalities and Bergman kernels [book review], Bull. Amer. Math. Soc. (N.S.) 46 (2009), 349361.Google Scholar
Zhang, S.-W., Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), 187221.Google Scholar