Skip to main content
    • Aa
    • Aa

An injectivity theorem

  • Florin Ambro (a1)

We generalize the injectivity theorem of Esnault and Viehweg, and apply it to the structure of log canonical type divisors.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. Deligne , Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Publ. Math. Inst. Hautes Études Sci. 35 (1969), 107126.

P. Deligne , Théorie de Hodge II, Publ. Math. Inst. Hautes Études Sci. 40 (1971), 557.

P. Deligne , Théorie de Hodge III, Publ. Math. Inst. Hautes Études Sci. 44 (1974), 577.

H. Esnault and E. Viehweg , Revêtements cycliques, in Algebraic threefolds (Varenna, 1981), Lecture Notes in Mathematics, vol. 947 (Springer, Berlin–New York, 1982), 241250.

H. Esnault and E. Viehweg , Logarithmic de Rham complexes and vanishing theorems, Invent. Math. 86 (1986), 161194.

A. Grothendieck , On the de Rham cohomology of algebraic varieties, Publ. Math. Inst. Hautes Études Sci. 29 (1966), 95103.

Y. Kawamata , A generalization of Kodaira–Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), 4346.

K. Kodaira , On a differential-geometric method in the theory of analytic stacks, Proc. Natl. Acad. Sci. USA 39 (1953), 12681273.

J. Kollár , Higher direct images of dualizing sheaves I, Ann. of Math. (2) 123 (1986), 1142.

D. Mumford , Pathologies III, Amer. J. Math. 89 (1967), 94104.

J.-P. Serre , Faisceaux algebriques coherents, Ann. of Math. (2) 61 (1955), 197278.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 97 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd September 2017. This data will be updated every 24 hours.