Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-7bjf6 Total loading time: 0.251 Render date: 2021-07-28T21:47:35.468Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Base change for semiorthogonal decompositions

Published online by Cambridge University Press:  15 February 2011

Alexander Kuznetsov
Affiliation:
Algebra Section, Steklov Mathematical Institute, 8 Gubkin str., Moscow 119991, Russia (email: akuznet@mi.ras.ru) The Poncelet Laboratory, Independent University of Moscow, 119002, Bolshoy, Vlasyevskiy Pereulok 11, Moscow, Russia
Rights & Permissions[Opens in a new window]

Abstract

Let X be an algebraic variety over a base scheme S and ϕ:TS a base change. Given an admissible subcategory 𝒜 in 𝒟b(X), the bounded derived category of coherent sheaves on X, we construct under some technical conditions an admissible subcategory 𝒜T in 𝒟b(X×ST), called the base change of 𝒜, in such a way that the following base change theorem holds: if a semiorthogonal decomposition of 𝒟b (X) is given, then the base changes of its components form a semiorthogonal decomposition of 𝒟b (X×ST) . As an intermediate step, we construct a compatible system of semiorthogonal decompositions of the unbounded derived category of quasicoherent sheaves on X and of the category of perfect complexes on X. As an application, we prove that the projection functors of a semiorthogonal decomposition are kernel functors.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[1]Bökstedt, M. and Neeman, A., Homotopy limits in triangulated categories, Compositio Math. 86 (1993), 209234.Google Scholar
[2]Bondal, A., Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 2544 (in Russian); translation in Math. USSR-Izv. 34 (1990), 23–42.Google Scholar
[3]Bondal, A. and Kapranov, M., Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 11831205, 1337 (in Russian); translation in Math. USSR-Izv. 35 (1990), 519–541.Google Scholar
[4]Bondal, A. and Orlov, D., Semiorthogonal decomposition for algebraic varieties. Preprint, arXiv:alg-geom/9506012v1.Google Scholar
[5]Bondal, A. and Orlov, D., Derived categories of coherent sheaves, in Proceedings of the international congress of mathematicians, Vol. II (Beijing, 2002) (Higher Education Press, Beijing, 2002), 4756.Google Scholar
[6]Bondal, A. and Van den Bergh, M., Generators and representability of functors in commutative and non-commutative geometry, Mosc. Math. J. 3 (2003), 136, 258.Google Scholar
[7]Kashiwara, M. and Schapira, P., Categories and sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332 (Springer, Berlin, 2006).CrossRefGoogle Scholar
[8]Kuznetsov, A., Hyperplane sections and derived categories, Izv. Ross. Acad. Nauk Ser. Mat. 70 (2006), 23128 (in Russian); translation in Izv. Math. 70 (2006), 447–547.Google Scholar
[9]Kuznetsov, A., Homological projective duality, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 157220.CrossRefGoogle Scholar
[10]Kuznetsov, A., Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. 13 (2008), 661696.CrossRefGoogle Scholar
[11]Neeman, A., The connection between the K-theory localisation theorem of Thomason, Trobaugh and Yao, and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. 25 (1992), 547566.CrossRefGoogle Scholar
[12]Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), 205236.CrossRefGoogle Scholar
[13]Orlov, D., Equivalences of derived categories and K3 surfaces, J. Math. Sci. (N.Y.) 84 (1997), 13611381, Algebraic Geometry 7.CrossRefGoogle Scholar
[14]Orlov, D., Triangulated categories of singularities and equivalences between Landau–Ginzburg models, Mat. Sb. 197 (2006), 117132 (in Russian); translation in Sb. Math. 197 (2006), 1827–1840.Google Scholar
You have Access
29
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Base change for semiorthogonal decompositions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Base change for semiorthogonal decompositions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Base change for semiorthogonal decompositions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *