Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-lv2sk Total loading time: 0.209 Render date: 2022-07-01T06:01:25.705Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Article contents

Bernstein–Sato polynomials of arbitrary varieties

Published online by Cambridge University Press:  04 December 2007

Nero Budur
Affiliation:
Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, USAnbudur@math.jhu.edu
Mircea Mustaţa
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USAmmustata@umich.edu
Morihiko Saito
Affiliation:
RIMS Kyoto University, Kyoto 606-8502, Japanmsaito@kurims.kyoto-u.ac.jp
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce the notion of the Bernstein–Sato polynomial of an arbitrary variety (which is not necessarily reduced nor irreducible) using the theory of V-filtrations of M. Kashiwara and B. Malgrange. We prove that the decreasing filtration by multiplier ideals coincides essentially with the restriction of the V-filtration. This implies a relation between the roots of the Bernstein–Sato polynomial and the jumping coefficients of the multiplier ideals, and also a criterion for rational singularities in terms of the maximal root of the polynomial in the case of a reduced complete intersection. These are generalizations of the hypersurface case. We can calculate the polynomials explicitly in the case of monomial ideals.

Type
Research Article
Copyright
Foundation Compositio Mathematica 2006
You have Access
22
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bernstein–Sato polynomials of arbitrary varieties
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bernstein–Sato polynomials of arbitrary varieties
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bernstein–Sato polynomials of arbitrary varieties
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *