Hostname: page-component-cb9f654ff-65tv2 Total loading time: 0 Render date: 2025-08-20T12:36:00.989Z Has data issue: false hasContentIssue false

Bernstein–Sato polynomials of locally quasi-homogeneous divisors in $\mathbb{C}^{3}$

Published online by Cambridge University Press:  20 August 2025

Daniel Bath*
Affiliation:
Departement Wiskunde, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium dan.bath@kuleuven.be

Abstract

We consider the Bernstein–Sato polynomial of a locally quasi-homogeneous polynomial $f \in R = \mathbb{C}[x_{1}, x_{2}, x_{3}]$. We construct, in the analytic category, a complex of $\mathscr{D}_{X}[s]$-modules that can be used to compute the $\mathscr{D}_{X}[s]$-dual of $\mathscr{D}_{X}[s] f^{s-1}$ as the middle term of a short exact sequence where the outer terms are well understood. This extends a result by Narváez Macarro where a freeness assumption was required. We derive many results about the zeros of the Bernstein–Sato polynomial. First, we prove each nonvanishing degree of the zeroth local cohomology of the Milnor algebra $H_{\mathfrak{m}}^{0} (R / (\partial f))$ contributes a root to the Bernstein–Sato polynomial, generalizing a result of M. Saito (where the argument cannot weaken homogeneity to quasi-homogeneity). Second, we prove the zeros of the Bernstein–Sato polynomial admit a partial symmetry about $-1$, extending a result of Narváez Macarro that again required freeness. We give applications to very small roots, the twisted logarithmic comparison theorem, and more precise statements when f is additionally assumed to be homogeneous. Finally, when f defines a hyperplane arrangement in $\mathbb{C}^{3}$ we give a complete formula for the zeros of the Bernstein–Sato polynomial of f. We show all zeros except the candidate root $-2 + (2 / \deg(f))$ are (easily) combinatorially given; we give many equivalent characterizations of when the only noncombinatorial candidate root $-2 + (2/ \deg(f))$ is in fact a zero of the Bernstein–Sato polynomial. One equivalent condition is the nonvanishing of $H_{\mathfrak{m}}^{0}( R / (\partial f))_{\deg(f) - 1}$.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Dedicated to Brandy Ambrose-Bath, beloved in perpetuity.

References

Bath, D., Combinatorially determined zeroes of Bernstein-Sato ideals for tame and free arrangements , J. Singul. 20 (2020), 165204.Google Scholar
Bath, D., A noncommutative analogue of the Peskine–Szpiro Acyclicity Lemma, Ann. Inst. Fourier (Grenoble), to appear. Preprint (2021), arXiv:2109.14223.Google Scholar
Bath, D., A note on Bernstein-Sato varieties for tame divisors and arrangements, Michigan Math. J. 73 (2023), 751779.Google Scholar
Bath, D., Hyperplane arrangements satisfy (un)twisted logarithmic comparison theorems, applications to $\mathscr{D}_{X}$ -modules, Forum Math, Pi 12 (2024), e19.CrossRefGoogle Scholar
Bath, D. and Saito, M., Twisted logarithmic complexes of positively weighted homogeneous divisors, J. Algebraic Geom. 34 (2024), doi:10.1090/jag/833.CrossRefGoogle Scholar
Bernšten, I. N., Analytic continuation of generalized functions with respect to a parameter , Funkcional. Anal. i Priložen. 6 (1972), 2640.Google Scholar
Björk, J.-E., Analytic $\mathscr{D}$ -modules and applications, Mathematics and its Applications, vol. 247 (Kluwer Academic, Dordrecht, 1993).Google Scholar
Brandt, K. A. and Terao, H., Free arrangements and relation spaces , Discrete Comput. Geom. 12 (1994), 4963.CrossRefGoogle Scholar
Brenner, H. and Kaid, A., Syzygy bundles on $\mathbb{P}^2$ and the weak Lefschetz property, Illinois J. Math. 51 (2007), 12991308.Google Scholar
Briançon, J., Granger, M., and Maisonobe, Ph, Sur le polynôme de Bernstein des singularitês semi-quasi-homogènes, Prêpublication de l’Universitê de Nice (1986), no. 138.Google Scholar
Briançon, J., Granger, M., Maisonobe, Ph, and Miniconi, M., Algorithme de calcul du polynôme de Bernstein: cas non dégénéré , Ann. Inst. Fourier (Grenoble) 39 (1989), 553610.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen-Macaulay rings , Cambridge Studies in Advanced Mathematics, vol. 39 (Cambridge University Press, Cambridge, 1993).Google Scholar
Budur, N., van der Veer, R., Wu, L. and Zhou, P., Zero loci of Bernstein-Sato ideals , Invent. Math. 225 (2021), 4572.CrossRefGoogle Scholar
Budur, N., van der Veer, R., Wu, L. and Zhou, P., Zero loci of Bernstein-Sato ideals II , Selecta Math. (N.S.) 27 (2021), 32.CrossRefGoogle Scholar
Calderón-Moreno, F. J. and Narváez-Macarro, L., The module for locally quasi-homogeneous free divisors, Compositio Math. 134 (2002), 5974.Google Scholar
Calderón Moreno, F. J. and Narváez Macarro, L., Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres , Ann. Inst. Fourier (Grenoble) 55 (2005), 4775.CrossRefGoogle Scholar
Calderón Moreno, F. J. and Narváez Macarro, L., On the logarithmic comparison theorem for integrable logarithmic connections, Proc. Lond. Math. Soc. 98 (2009), 585606.CrossRefGoogle Scholar
Castro-Jiménez, F. J., Narváez-Macarro, L. and Mond, D., Cohomology of the complement of a free divisor, Trans. Amer. Math. Soc. 348 (1996), 30373049.CrossRefGoogle Scholar
Cohen, D., Denham, G., Falk, M. and Varchenko, A., Critical points and resonance of hyperplane arrangements, Canad. J. Math. 63 (2011), 10381057.Google Scholar
Denham, G. and Schulze, M., Complexes, duality and Chern classes of logarithmic forms along hyperplane arrangements, in Arrangements of hyperplanes—Sapporo 2009, Advanced Studies in Pure Mathematics, vol. 62 (Mathematical Society of Japan, Tokyo, 2012), 27–57.Google Scholar
Derksen, H. and Sidman, J., Castelnuovo-Mumford regularity by approximation , Adv. Math. 188 (2004), 104123.CrossRefGoogle Scholar
Dimca, A. and Popescu, D., Hilbert series and Lefschetz properties of dimension one almost complete intersections, Comm. Algebra 44 (2016), 44674482.CrossRefGoogle Scholar
DiPasquale, M., Sidman, J. and Traves, W., Geometric aspects of the Jacobian of a hyperplane arrangement, Preprint (2023), arXiv:2209.04929.Google Scholar
Falk, M. and Randell, R., On the homotopy theory of arrangements, in Complex analytic singularities, Advanced Studies in Pure Mathematics, vol. 8 (North-Holland, Amsterdam, 1987), 101–124.CrossRefGoogle Scholar
Holland, M. P. and Mond, D., Logarithmic differential forms and the cohomology of the complement of a divisor , Math. Scand. 83 (1998), 235254.CrossRefGoogle Scholar
Kashiwara, M., B-functions and holonomic systems , Invent. Math. 38 (1976/77), 3353.CrossRefGoogle Scholar
Kashiwara, M., Vanishing cycle sheaves and holonomic systems of differential equations , in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Mathematics, vol. 1016 (Springer, Berlin, 1983), 134142.CrossRefGoogle Scholar
Kochman, F., Bernstein polynomials and Milnor algebras , Proc. Natl. Acad. Sci. USA 73 (1976), 2546.CrossRefGoogle ScholarPubMed
Maisonobe, P., Filtration relative, l’idéal de Bernstein et ses pentes , Rend. Semin. Mat. Univ. Padova 150 (2023), 81125.CrossRefGoogle Scholar
Malgrange, B., Le polynôme de Bernstein d’une singularité isolée , in Fourier integral operators and partial differential equations (Colloq. Int., Université. Nice, Nice, 1974), Lecture Notes in Mathematics, vol. 459 (Springer, Berlin–New York, 1974), 98119.CrossRefGoogle Scholar
Miller, E. and Sturmfels, B., Combinatorial commutative algebra , Graduate Texts in Mathematics, vol. 227 (Springer, New York, 2005).Google Scholar
Mond, D., Notes on logarithmic vector fields, logarithmic differential forms and free divisors, Lecture notes (2012), https://homepages.warwick.ac.uk/~masbm/LectureNotes/notesOnLogForms.pdf/.Google Scholar
Narváez Macarro, L., A duality approach to the symmetry of Bernstein-Sato polynomials of free divisors , Adv. Math. 281 (2015), 12421273.CrossRefGoogle Scholar
Rose, L. L. and Terao, H., A free resolution of the module of logarithmic forms of a generic arrangement , J. Algebra 136 (1991), 376400.CrossRefGoogle Scholar
Saito, K., Quasihomogene isolierte Singularitäten von Hyperflächen , Invent. Math. 14 (1971), 123142.CrossRefGoogle Scholar
Saito, K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265291.Google Scholar
Saito, M., Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), 849995.Google Scholar
Saito, M., Induced D-modules and differential complexes , Bull. Soc. Math. France 117 (1989), 361387.CrossRefGoogle Scholar
Saito, M., On microlocal b-function , Bull. Soc. Math. France 122 (1994), 163184.CrossRefGoogle Scholar
Saito, M., Bernstein-Sato polynomials of hyperplane arrangements , Selecta Math. (N.S.) 22 (2016), 20172057.CrossRefGoogle Scholar
Saito, M., Degeneration of pole order spectral sequences for hyperplane arrangements of 4 variables, Preprint (2019), arXiv:1902.03838.Google Scholar
Saito, M., Bernstein-Sato polynomials for projective hypersurfaces with weighted homogeneous isolated singularities, Preprint (2020, version 9), arXiv:1609.04801.Google Scholar
Schenck, H. K., Elementary modifications and line configurations in $\mathbb{P}^{2}$ , Comment. Math. Helv. 78 (2003), 447462.CrossRefGoogle Scholar
Sernesi, E., The local cohomology of the Jacobian ring, Doc. Math. 19 (2014), 541565.Google Scholar
The Stacks project authors. The Stacks project (2024), https://stacks.math.columbia.edu Google Scholar
Tohǎneanu, S. O., Topological criteria for k-formal arrangements , Beiträge Algebra Geom. 48 (2007), 2734.Google Scholar
van Straten, D. and Warmt, T., Gorenstein-duality for one-dimensional almost complete intersections—with an application to non-isolated real singularities, Math. Proc. Cambridge Philos. Soc. 158 (2015), 249268.CrossRefGoogle Scholar
Walther, U., Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compositio. Math. 141 (2005), 121145.Google Scholar
Walther, U., Survey on the D-module fs , in Commutative algebra and noncommutative algebraic geometry .Vol. I, Mathematical Sciences Research Institute Publications, vol. 67 (Cambridge University Press, New York, 2015), 391430, with an appendix by Anton Leykin.Google Scholar
Walther, U., The Jacobian module, the Milnor fiber, and the D-module generated by fs , Invent. Math. 207 (2017), 12391287.CrossRefGoogle Scholar
Wiens, J. and Yuzvinsky, S., De Rham cohomology of logarithmic forms on arrangements of hyperplanes , Trans. Amer. Math. Soc. 349 (1997), 16531662.CrossRefGoogle Scholar
Yano, T., On the theory of b-functions, Publ. Res. Inst. Math. Sci. 14 (1978), 111202.Google Scholar
Ziegler, G. M., Combinatorial construction of logarithmic differential forms , Adv. Math. 76 (1989), 116154.CrossRefGoogle Scholar