Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-09-21T13:50:59.988Z Has data issue: false hasContentIssue false

The Brauer groups of moduli of genus three curves, abelian threefolds and plane curves

Published online by Cambridge University Press:  19 September 2025

A. Di Lorenzo
Affiliation:
Dipartimento di matematica, Università di Pisa, Pisa 56127, Italy andrea.dilorenzo@unipi.it
R. Pirisi
Affiliation:
Dipartimento di matematica e applicazioni ‘R. Caccioppoli’, Università degli Studi di Napoli Federico II, Napoli I-80126, Italy roberto.pirisi@unina.it

Abstract

We compute the $\ell$-primary torsion of the Brauer group of the moduli stack of smooth curves of genus three over any field of characteristic different from two and the Brauer group of the moduli stacks of smooth plane curves of degree d over any algebraically closed field of characteristic different from two, three and coprime to d. We achieve this result by computing the low-degree cohomological invariants of these stacks. As a corollary, we are additionally able to compute the $\ell$-primary torsion of the Brauer group of the moduli stack of principally polarized abelian varieties of dimension three over any field of characteristic different from two.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Achenjang, N., Bhamidipati, D., Jha, A., Ji, C., and Lopez, R., The Brauer Group of Y0(2), Preprint (2023), https://arxiv.org/abs/2311.18132arXiv:2311.18132.Google Scholar
Antieau, B. and Meier, L., The Brauer group of the moduli stack of elliptic curves , Algebra Number Theory 14 (2020), 22952333.Google Scholar
Arbarello, E. and Cornalba, M., The Picard groups of the moduli spaces of curves , Topology 26 (1987), 153171.Google Scholar
Bartling, S. and Ito, K., Vanishing of Brauer groups of moduli stacks of stable curves, Preprint (2024), https://arxiv.org/abs/2412.20435arXiv:2412.20435 [math:AG].Google Scholar
Canning, S. and Larson, H., The Chow rings of the moduli spaces of curves of genus 7, 8, and 9, J. Algebraic Geom. 33 (2024), 55116.Google Scholar
Collino, A., A simple proof of the theorem of Torelli based on Torelli’s approach , Proc. Amer. Math. Soc. 100 (1987), 1620.Google Scholar
Di Lorenzo, A., Picard group of moduli of curves of low genus in positive characteristic , Manuscripta Math. 165 (2021), 339361.10.1007/s00229-020-01212-3CrossRefGoogle Scholar
Di Lorenzo, A., Fulghesu, D., and Vistoli, A., The integral Chow ring of the stack of smooth non-hyperelliptic curves of genus three, Trans. Amer. Math. Soc. 374 (2021), 55835622.10.1090/tran/8354CrossRefGoogle Scholar
Di Lorenzo, A. and Pirisi, R., Brauer groups of moduli of hyperelliptic curves via cohomological invariants , Forum Math. Sigma 9 (2021), e64.Google Scholar
Di Lorenzo, A. and Pirisi, R., Cohomological invariants of root stacks and admissible double coverings, Canad. J. Math. (2021), doi: https://doi.org/10.4153/S0008414X21000602.Google Scholar
Di Lorenzo, A. and Pirisi, R., Cohomological invariants and Brauer groups of algebraic stacks in positive characteristic, Preprint (2022), https://arxiv.org/abs/2207.08792arXiv:2207.08792 [math:AG].Google Scholar
Edidin, D. and Fulghesu, D., The integral Chow ring of the stack of hyperelliptic curves of even genus , Math. Res. Lett. 16 (2009), 2740.Google Scholar
Edidin, D. and Graham, W., Equivariant intersection theory (with an Appendix by Angelo Vistoli: The Chow ring of M2) , Invent. Math. 131 (1998), 595634.Google Scholar
Edidin, D., Hasset, B., Kresch, A., and Vistoli, A., Brauer group and quotient stacks , Amer. J. Math. 123 (2001), 761777.Google Scholar
Faber, C., Chow rings of moduli spaces of curves I: the Chow ring of M3 , Ann. of Math. (2) 132 (1990), 331419.Google Scholar
Fringuelli, R. and Pirisi, R., The Brauer group of the universal moduli space of vector bundles over smooth curves, Int. Math. Res. Not. IMRN (2019), doi: https://doi.org/10.1093/imrn/rnz300.Google Scholar
Fringuelli, R. and Viviani, F., On the Picard group scheme of the moduli stack of stable pointed curves, Preprint (2020), https://arxiv.org/abs/2005.06920arXiv:2005.06920 [Math:AG].Google Scholar
Fulghesu, D. and Vistoli, A., The Chow ring of the stack of smooth plane cubics , Michigan Math. J. 67 (2018), 329.Google Scholar
Fulton, W., Intersection theory, A Series of Modern Surveys in Mathematics, vol. 2, second edition (Springer-Verlag, Berlin, 1998).Google Scholar
Fulton, W. and Olsson, M., The Picard group of $\mathscr{M}_{1,1}$ , Algebra Number Theory 4 (2010), 87104.10.2140/ant.2010.4.87CrossRefGoogle Scholar
Garibaldi, S., Merkurjev, A., and Serre, J.-P., Cohomological invariants in Galois cohomology , University Lecture Series, vol. 28 (American Mathematical Society, Providence, RI, 2003).Google Scholar
Geraschenko, A. and Satriano, M., A bottom-up characterization of smooth Deligne-Mumford stacks, Int. Math. Res. Not. IMRN 2017 (2016), 6469–6483.Google Scholar
Gille, S. and Hirsch, C., On the splitting principle for cohomological invariants of reflection groups, Transform. Groups (2021), doi: https://doi.org/10.1007/s00031-020-09637-6.CrossRefGoogle Scholar
Guillot, P., Geometric methods for cohomological invariants , Doc. Math. 12 (2007), 521545.Google Scholar
Harris, J., Galois groups of enumerative problems , Duke Math. J. 46 (1979), 685724.Google Scholar
Hartshorne, R., Algebraic geometry (Springer-Verlag, Berlin–New York, 1979).Google Scholar
Izadi, E., The Chow ring of the moduli space of curves of genus 5, in The moduli space of curves (Birkhäuser, Boston, 1995), 267303.Google Scholar
Korkmaz, M. and Stipsicz, A. I., The second homology groups of mapping class groups of oriented surfaces , Math. Proc. Cambridge Philos. Soc. 134 (2003), 479489.10.1017/S0305004102006461CrossRefGoogle Scholar
Kresch, A. and Vistoli, A., On coverings of Deligne–Mumford stacks and surjectivity of the Brauer map , Bull. Lond. Math. Soc. 36 (2004), 188192.10.1112/S0024609303002728CrossRefGoogle Scholar
Landesman, A., Properness of the Torelli map on compact type curves, https://people.math.harvard.edu/landesman/assets/properness-of-compact-type.pdf.Google Scholar
Landesman, A., Theta characteristics of an algebraic curve , Trans. Amer. Math. Soc. 8 (2021), 354378.Google Scholar
Laumon, G. and Moret-Bailly, L., Champs algébrique (Springer, Berlin–Heidelberg, 2000).Google Scholar
Martins, R. V. and Gagliardi, E. M., Max Noether theorem for singular curves , Manuscripta Math. 173 (2024), 12171232.Google Scholar
Mumford, D., Picard groups of moduli problems, in Arithmetical algebraic geometry, proc. conf. held at Purdue University, 5–7 December, 1965, ed. O. F. G. Schilling (1965), 33–81.Google Scholar
Mumford, D., Theta characteristics of an algebraic curve , Ann. Sci. Éc. Norm. Supér. (4) 4 (1971), 181192.Google Scholar
Mumford, D., Towards an enumerative geometry of the moduli space of curves, in Arithmetic and geometry: papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday, vol. II: Geometry (Birkhäuser, Boston, 1983), 271–328.Google Scholar
Oort, F., Singularities of the moduli scheme for curves of genus three, Indag. Math. (N.S.) 78 (1975), 170174.Google Scholar
Pirisi, R., Cohomological invariants of algebraic stacks , Trans. Amer. Math. Soc. 370 (2018), 18851906.Google Scholar
Poonen, B., Varieties without extra automorphisms III: hypersurfaces, Finite Fields Appl. 11 (2005), 230268.Google Scholar
Rost, M., Chow groups with coefficients , Doc. Math. 1 (1996), 319393.Google Scholar
Schröer, S., Topological methods for complex-analytic Brauer groups , Topology 44 (2005), 875894.10.1016/j.top.2005.02.005CrossRefGoogle Scholar
Sekiguchi, T., On the fields of rationality for curves and their Jacobian varieties , Nagoya Math. J. 88 (1982), 197212.10.1017/S0027763000020171CrossRefGoogle Scholar
Shin, M., The Brauer group of the moduli stack of elliptic curves over algebraically closed fields of characteristic 2, J. Pure Appl. Algebra 223 (2019), 19661999.10.1016/j.jpaa.2018.08.010CrossRefGoogle Scholar
Shin, M., The cohomological Brauer group of a torsion Gm-Gerbe, Int. Math. Res. Not. IMRN 2021 (2021), 14480–14507.Google Scholar
Totaro, B., The Chow ring of a classifying space , Proc. Sympos. Pure Math. 67 (1999), 249281.Google Scholar